Store single 2-element structure from one lane of two registers. This instruction stores a 2-element structure to memory from corresponding elements of two SIMD&FP registers.
Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.
It has encodings from 2 classes: No offset and Post-index
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | Q | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | x | x | 0 | S | size | Rn | Rt | |||||||||
L | R | opcode |
ST2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')
ST2 { <Vt>.B, <Vt2>.B }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')
ST2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')
ST2 { <Vt>.H, <Vt2>.H }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')
ST2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')
ST2 { <Vt>.S, <Vt2>.S }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')
ST2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')
ST2 { <Vt>.D, <Vt2>.D }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')
integer t = UInt(Rt); integer n = UInt(Rn); integer m = integer UNKNOWN; boolean wback = FALSE;
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | Q | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | Rm | x | x | 0 | S | size | Rn | Rt | |||||||||||||
L | R | opcode |
ST2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>], #2 // (PSTATE.C64 == '0')
ST2 { <Vt>.B, <Vt2>.B }[<index>], [<Cn|CSP>], #2 // (PSTATE.C64 == '1')
ST2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')
ST2 { <Vt>.B, <Vt2>.B }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')
ST2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>], #4 // (PSTATE.C64 == '0')
ST2 { <Vt>.H, <Vt2>.H }[<index>], [<Cn|CSP>], #4 // (PSTATE.C64 == '1')
ST2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')
ST2 { <Vt>.H, <Vt2>.H }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')
ST2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>], #8 // (PSTATE.C64 == '0')
ST2 { <Vt>.S, <Vt2>.S }[<index>], [<Cn|CSP>], #8 // (PSTATE.C64 == '1')
ST2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')
ST2 { <Vt>.S, <Vt2>.S }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')
ST2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>], #16 // (PSTATE.C64 == '0')
ST2 { <Vt>.D, <Vt2>.D }[<index>], [<Cn|CSP>], #16 // (PSTATE.C64 == '1')
ST2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')
ST2 { <Vt>.D, <Vt2>.D }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')
integer t = UInt(Rt); integer n = UInt(Rn); integer m = UInt(Rm); boolean wback = TRUE;
<Vt> |
Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field. |
<Vt2> |
Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1 modulo 32. |
<Xn|SP> |
Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field. |
<Cn|CSP> |
Is the name of the capability register or capability stack pointer holding the base address, encoded in the "Rn" field. |
<Xm> |
Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the "Rm" field. |
integer scale = UInt(opcode<2:1>); integer selem = UInt(opcode<0>:R) + 1; boolean replicate = FALSE; integer index; case scale of when 3 // load and replicate if L == '0' || S == '1' then UNDEFINED; scale = UInt(size); replicate = TRUE; when 0 index = UInt(Q:S:size); // B[0-15] when 1 if size<0> == '1' then UNDEFINED; index = UInt(Q:S:size<1>); // H[0-7] when 2 if size<1> == '1' then UNDEFINED; if size<0> == '0' then index = UInt(Q:S); // S[0-3] else if S == '1' then UNDEFINED; index = UInt(Q); // D[0-1] scale = 3; MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE; integer datasize = if Q == '1' then 128 else 64; integer esize = 8 << scale;
CheckFPAdvSIMDEnabled64(); bits(64) address; bits(64) offs; bits(128) rval; bits(esize) element; constant integer ebytes = esize DIV 8; VirtualAddress base = BaseReg[n]; address = VAddress(base); if replicate || memop == MemOp_LOAD then VACheckAddress(base, address, ebytes * selem, CAP_PERM_LOAD, AccType_VEC); else VACheckAddress(base, address, ebytes * selem, CAP_PERM_STORE, AccType_VEC); offs = Zeros(); if replicate then // load and replicate to all elements for s = 0 to selem-1 element = Mem[address + offs, ebytes, AccType_VEC]; // replicate to fill 128- or 64-bit register V[t] = Replicate(element, datasize DIV esize); offs = offs + ebytes; t = (t + 1) MOD 32; else // load/store one element per register for s = 0 to selem-1 rval = V[t]; if memop == MemOp_LOAD then // insert into one lane of 128-bit register Elem[rval, index, esize] = Mem[address + offs, ebytes, AccType_VEC]; V[t] = rval; else // memop == MemOp_STORE // extract from one lane of 128-bit register Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, index, esize]; offs = offs + ebytes; t = (t + 1) MOD 32; if wback then if m != 31 then offs = X[m]; BaseReg[n] = VAAdd(base, offs);
Internal version only: isa v32.13, AdvSIMD v29.04, pseudocode morello-2022-01_rc2, capabilities morello-2022-01_rc2 ; Build timestamp: 2022-01-11T11:23
Copyright © 2010-2022 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.