SABDL, SABDL2

Signed Absolute Difference Long. This instruction subtracts the vector elements of the second source SIMD&FP register from the corresponding vector elements of the first source SIMD&FP register, places the absolute value of the results into a vector, and writes the vector to the lower or upper half of the destination SIMD&FP register. The destination vector elements are twice as long as the source vector elements.

The SABDL instruction writes the vector to the lower half of the destination register and clears the upper half, while the SABDL2 instruction writes the vector to the upper half of the destination register without affecting the other bits of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped.

313029282726252423222120191817161514131211109876543210
0Q001110size1Rm011100RnRd
Uop

SABDL{2} <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Tb>

integer d = UInt(Rd); integer n = UInt(Rn); integer m = UInt(Rm); if size == '11' then UNDEFINED; integer esize = 8 << UInt(size); integer datasize = 64; integer part = UInt(Q); integer elements = datasize DIV esize; boolean accumulate = (op == '0'); boolean unsigned = (U == '1');

Assembler Symbols

2 Is the second and upper half specifier. If present it causes the operation to be performed on the upper 64 bits of the registers holding the narrower elements, and is encoded in Q:
Q 2
0 [absent]
1 [present]
<Vd>

Is the name of the SIMD&FP destination register, encoded in the "Rd" field.

<Ta> Is an arrangement specifier, encoded in size:
size <Ta>
00 8H
01 4S
10 2D
11 RESERVED
<Vn>

Is the name of the first SIMD&FP source register, encoded in the "Rn" field.

<Tb> Is an arrangement specifier, encoded in size:Q:
size Q <Tb>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 x RESERVED
<Vm>

Is the name of the second SIMD&FP source register, encoded in the "Rm" field.

Operation

CheckFPAdvSIMDEnabled64(); bits(datasize) operand1 = Vpart[n, part]; bits(datasize) operand2 = Vpart[m, part]; bits(2*datasize) result; integer element1; integer element2; bits(2*esize) absdiff; result = if accumulate then V[d] else Zeros(); for e = 0 to elements-1 element1 = Int(Elem[operand1, e, esize], unsigned); element2 = Int(Elem[operand2, e, esize], unsigned); absdiff = Abs(element1 - element2)<2*esize-1:0>; Elem[result, e, 2*esize] = Elem[result, e, 2*esize] + absdiff; V[d] = result;


Internal version only: isa v32.13, AdvSIMD v29.04, pseudocode morello-2022-01_rc2, capabilities morello-2022-01_rc2 ; Build timestamp: 2022-01-11T11:23

Copyright © 2010-2022 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.