Unsigned by signed integer quarter-tile sums of four outer products, accumulating
This instruction generates four independent quarter-tile unsigned by signed integer sums of outer products from the sub-matrices in the half-vectors of the one or two first and second source vectors and accumulates the results to the corresponding elements of a 32-bit or 64-bit element ZA tile.
In case of the 8-bit integer variant, each of the quarter-tile sums of outer products is generated by multiplying the SVLS÷2 × 4 sub-matrix of 8-bit unsigned values held in the half-vectors of the first source vectors by the 4 × SVLS÷2 sub-matrix of 8-bit signed values held in the half-vectors of the second source vectors. Each 32-bit container of the half-vectors in the first source vectors holds 4 elements of each row of a SVLS÷2 × 4 sub-matrix. Similarly, each 32-bit container of the half-vectors in the second source vector holds 4 elements of each column of a 4 × SVLS÷2 sub-matrix.
In case of the 16-bit integer variant, each of the quarter-tile sums of outer products is generated by multiplying the SVLD÷2 × 4 sub-matrix of 16-bit unsigned values held in the half-vectors of the first source vectors by the 4 × SVLD÷2 sub-matrix of 16-bit signed values held in the half-vectors of the second source vectors. Each 64-bit container of the half-vectors in the first source vectors holds 4 elements of each row of a SVLD÷2 × 4 sub-matrix. Similarly, each 64-bit container of the half-vectors in the second source vector holds 4 elements of each column of a 4 × SVLD÷2 sub-matrix.
The resulting quarter-tile SVLS÷2 × SVLS÷2 widened 32-bit integer sums of outer products in case of the 8-bit integer variant or SVLD÷2 × SVLD÷2 widened 64-bit integer sums of outer products in case of the 16-bit integer variant are then destructively added to the 32-bit or 64-bit integer destination tile respectively.
This is equivalent to performing a 4-way dot product and accumulate to each of the destination tile elements.
This instruction is unpredicated.
It has encodings from 8 classes: 32-bit, single and multiple vectors , 32-bit, single vectors , 32-bit, multiple and single vectors , 32-bit, multiple vectors , 64-bit, single and multiple vectors , 64-bit, single vectors , 64-bit, multiple and single vectors and 64-bit, multiple vectors
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | Zm | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | Zn | 0 | 0 | 0 | 0 | ZAda | |||||
u0 | u1 | M | N | S |
if !IsFeatureImplemented(FEAT_SME_MOP4) then EndOfDecode(Decode_UNDEF); constant integer esize = 32; constant integer n = UInt('0':Zn:'0'); constant integer m = UInt('1':Zm:'0'); constant integer nreg = 1; constant integer mreg = 2; constant integer da = UInt(ZAda); constant boolean sub_op = FALSE; constant boolean op1_unsigned = TRUE; constant boolean op2_unsigned = FALSE;
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | Zm | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | Zn | 0 | 0 | 0 | 0 | ZAda | |||||
u0 | u1 | M | N | S |
if !IsFeatureImplemented(FEAT_SME_MOP4) then EndOfDecode(Decode_UNDEF); constant integer esize = 32; constant integer n = UInt('0':Zn:'0'); constant integer m = UInt('1':Zm:'0'); constant integer nreg = 1; constant integer mreg = 1; constant integer da = UInt(ZAda); constant boolean sub_op = FALSE; constant boolean op1_unsigned = TRUE; constant boolean op2_unsigned = FALSE;
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | Zm | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | Zn | 0 | 0 | 0 | 0 | ZAda | |||||
u0 | u1 | M | N | S |
if !IsFeatureImplemented(FEAT_SME_MOP4) then EndOfDecode(Decode_UNDEF); constant integer esize = 32; constant integer n = UInt('0':Zn:'0'); constant integer m = UInt('1':Zm:'0'); constant integer nreg = 2; constant integer mreg = 1; constant integer da = UInt(ZAda); constant boolean sub_op = FALSE; constant boolean op1_unsigned = TRUE; constant boolean op2_unsigned = FALSE;
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | Zm | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | Zn | 0 | 0 | 0 | 0 | ZAda | |||||
u0 | u1 | M | N | S |
if !IsFeatureImplemented(FEAT_SME_MOP4) then EndOfDecode(Decode_UNDEF); constant integer esize = 32; constant integer n = UInt('0':Zn:'0'); constant integer m = UInt('1':Zm:'0'); constant integer nreg = 2; constant integer mreg = 2; constant integer da = UInt(ZAda); constant boolean sub_op = FALSE; constant boolean op1_unsigned = TRUE; constant boolean op2_unsigned = FALSE;
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | Zm | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Zn | 0 | 0 | 1 | ZAda | ||||||
u0 | u1 | M | N | S |
if !IsFeatureImplemented(FEAT_SME_MOP4) || !IsFeatureImplemented(FEAT_SME_I16I64) then EndOfDecode(Decode_UNDEF); constant integer esize = 64; constant integer n = UInt('0':Zn:'0'); constant integer m = UInt('1':Zm:'0'); constant integer nreg = 1; constant integer mreg = 2; constant integer da = UInt(ZAda); constant boolean sub_op = FALSE; constant boolean op1_unsigned = TRUE; constant boolean op2_unsigned = FALSE;
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | Zm | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Zn | 0 | 0 | 1 | ZAda | ||||||
u0 | u1 | M | N | S |
if !IsFeatureImplemented(FEAT_SME_MOP4) || !IsFeatureImplemented(FEAT_SME_I16I64) then EndOfDecode(Decode_UNDEF); constant integer esize = 64; constant integer n = UInt('0':Zn:'0'); constant integer m = UInt('1':Zm:'0'); constant integer nreg = 1; constant integer mreg = 1; constant integer da = UInt(ZAda); constant boolean sub_op = FALSE; constant boolean op1_unsigned = TRUE; constant boolean op2_unsigned = FALSE;
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | Zm | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | Zn | 0 | 0 | 1 | ZAda | ||||||
u0 | u1 | M | N | S |
if !IsFeatureImplemented(FEAT_SME_MOP4) || !IsFeatureImplemented(FEAT_SME_I16I64) then EndOfDecode(Decode_UNDEF); constant integer esize = 64; constant integer n = UInt('0':Zn:'0'); constant integer m = UInt('1':Zm:'0'); constant integer nreg = 2; constant integer mreg = 1; constant integer da = UInt(ZAda); constant boolean sub_op = FALSE; constant boolean op1_unsigned = TRUE; constant boolean op2_unsigned = FALSE;
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | Zm | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | Zn | 0 | 0 | 1 | ZAda | ||||||
u0 | u1 | M | N | S |
if !IsFeatureImplemented(FEAT_SME_MOP4) || !IsFeatureImplemented(FEAT_SME_I16I64) then EndOfDecode(Decode_UNDEF); constant integer esize = 64; constant integer n = UInt('0':Zn:'0'); constant integer m = UInt('1':Zm:'0'); constant integer nreg = 2; constant integer mreg = 2; constant integer da = UInt(ZAda); constant boolean sub_op = FALSE; constant boolean op1_unsigned = TRUE; constant boolean op2_unsigned = FALSE;
<Zn> |
Is the name of the first source scalable vector register, registers in the range Z0-Z15, encoded as "Zn" times 2. |
<Zm1> |
Is the name of the first scalable vector register of the second source multi-vector group, in the range Z16-Z31, encoded as "Zm" times 2 plus 16. |
<Zm2> |
Is the name of the second scalable vector register of the second source multi-vector group, in the range Z16-Z31, encoded as "Zm" times 2 plus 17. |
<Zm> |
Is the name of the second source scalable vector register, registers in the range Z16-Z31, encoded as "Zm" times 2 plus 16. |
<Zn1> |
Is the name of the first scalable vector register of the first source multi-vector group, in the range Z0-Z15, encoded as "Zn" times 2. |
<Zn2> |
Is the name of the second scalable vector register of the first source multi-vector group, in the range Z0-Z15, encoded as "Zn" times 2 plus 1. |
CheckStreamingSVEAndZAEnabled(); constant integer VL = CurrentVL; constant integer hvsize = VL DIV 2; constant integer dim = hvsize DIV esize; constant integer tilesize = 4*dim*dim*esize; constant bits(tilesize) op3 = ZAtile[da, esize, tilesize]; bits(tilesize) result; integer prod; for outprod = 0 to 3 constant integer row_hv = outprod DIV 2; constant integer col_hv = outprod MOD 2; constant integer row_base = row_hv * dim; constant integer col_base = col_hv * dim; constant bits(VL) op1 = Z[n + (nreg-1)*col_hv, VL]; constant bits(VL) op2 = Z[m + (mreg-1)*row_hv, VL]; for row = 0 to dim-1 for col = 0 to dim-1 constant integer row_idx = row_base + row; constant integer col_idx = col_base + col; constant integer tile_idx = row_idx * dim * 2 + col_idx; bits(esize) sum = Elem[op3, tile_idx, esize]; for k = 0 to 3 prod = (Int(Elem[op1, 4*row_idx + k, esize DIV 4], op1_unsigned) * Int(Elem[op2, 4*col_idx + k, esize DIV 4], op2_unsigned)); if sub_op then prod = -prod; sum = sum + prod; Elem[result, tile_idx, esize] = sum; ZAtile[da, esize, tilesize] = result;
If PSTATE.DIT is 1:
Internal version only: aarchmrs v2024-12_rel, pseudocode v2024-12_rel ; Build timestamp: 2024-12-15T22:18
Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.