Floating-point quarter-tile outer products, accumulating
This instruction generates four independent quarter-tile floating-point outer products from the sub-matrices in the half-vectors of the one or two first and second source vectors and accumulates the results to the corresponding elements of a 16-bit, 32-bit, or 64-bit element ZA tile.
In case of the half-precision variant, each of the quarter-tile outer products is generated by multiplying the SVLH÷2 × 1 sub-matrix of half-precision values held in the half-vectors of the first source vectors by the 1 × SVLH÷2 sub-matrix of half-precision values held in the half-vectors of the second source vectors. In case of the single-precision variant, each of the quarter-tile outer products is generated by multiplying the SVLS÷2 × 1 sub-matrix of single-precision values held in the half-vectors of the first source vectors by the 1 × SVLS÷2 sub-matrix of single-precision values held in the half-vectors of the second source vectors. In case of the double-precision variant, each of the quarter-tile outer products is generated by multiplying the SVLD÷2 × 1 sub-matrix of double-precision values held in the half-vectors of the first source vectors by the 1 × SVLD÷2 sub-matrix of double-precision values held in the half-vectors of the second source vectors.
The resulting quarter-tile SVLH÷2 × SVLH÷2 half-precision outer products in case of the half-precision variant, SVLS÷2 × SVLS÷2 single-precision outer products in case of the single-precision variant, or SVLD÷2 × SVLD÷2 double-precision outer products in case of the double-precision variant are destructively added to the destination ZA tile. This is equivalent to performing a single multiply-accumulate to each of the destination tile elements.
This instruction follows SME ZA-targeting floating-point behaviors.
This instruction is unpredicated.
It has encodings from 12 classes: Half-precision, single and multiple vectors , Half-precision, single vectors , Half-precision, multiple and single vectors , Half-precision, multiple vectors , Single-precision, single and multiple vectors , Single-precision, single vectors , Single-precision, multiple and single vectors , Single-precision, multiple vectors , Double-precision, single and multiple vectors , Double-precision, single vectors , Double-precision, multiple and single vectors and Double-precision, multiple vectors
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | Zm | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Zn | 0 | 0 | 1 | 0 | 0 | ZAda | ||||
M | N | S |
if !IsFeatureImplemented(FEAT_SME_MOP4) || !IsFeatureImplemented(FEAT_SME_F16F16) then EndOfDecode(Decode_UNDEF); constant integer esize = 16; constant integer n = UInt('0':Zn:'0'); constant integer m = UInt('1':Zm:'0'); constant integer nreg = 1; constant integer mreg = 2; constant integer da = UInt(ZAda); constant boolean sub_op = FALSE;
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | Zm | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Zn | 0 | 0 | 1 | 0 | 0 | ZAda | ||||
M | N | S |
if !IsFeatureImplemented(FEAT_SME_MOP4) || !IsFeatureImplemented(FEAT_SME_F16F16) then EndOfDecode(Decode_UNDEF); constant integer esize = 16; constant integer n = UInt('0':Zn:'0'); constant integer m = UInt('1':Zm:'0'); constant integer nreg = 1; constant integer mreg = 1; constant integer da = UInt(ZAda); constant boolean sub_op = FALSE;
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | Zm | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | Zn | 0 | 0 | 1 | 0 | 0 | ZAda | ||||
M | N | S |
if !IsFeatureImplemented(FEAT_SME_MOP4) || !IsFeatureImplemented(FEAT_SME_F16F16) then EndOfDecode(Decode_UNDEF); constant integer esize = 16; constant integer n = UInt('0':Zn:'0'); constant integer m = UInt('1':Zm:'0'); constant integer nreg = 2; constant integer mreg = 1; constant integer da = UInt(ZAda); constant boolean sub_op = FALSE;
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | Zm | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | Zn | 0 | 0 | 1 | 0 | 0 | ZAda | ||||
M | N | S |
if !IsFeatureImplemented(FEAT_SME_MOP4) || !IsFeatureImplemented(FEAT_SME_F16F16) then EndOfDecode(Decode_UNDEF); constant integer esize = 16; constant integer n = UInt('0':Zn:'0'); constant integer m = UInt('1':Zm:'0'); constant integer nreg = 2; constant integer mreg = 2; constant integer da = UInt(ZAda); constant boolean sub_op = FALSE;
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | Zm | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Zn | 0 | 0 | 0 | 0 | ZAda | |||||
M | N | S |
if !IsFeatureImplemented(FEAT_SME_MOP4) then EndOfDecode(Decode_UNDEF); constant integer esize = 32; constant integer n = UInt('0':Zn:'0'); constant integer m = UInt('1':Zm:'0'); constant integer nreg = 1; constant integer mreg = 2; constant integer da = UInt(ZAda); constant boolean sub_op = FALSE;
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Zm | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Zn | 0 | 0 | 0 | 0 | ZAda | |||||
M | N | S |
if !IsFeatureImplemented(FEAT_SME_MOP4) then EndOfDecode(Decode_UNDEF); constant integer esize = 32; constant integer n = UInt('0':Zn:'0'); constant integer m = UInt('1':Zm:'0'); constant integer nreg = 1; constant integer mreg = 1; constant integer da = UInt(ZAda); constant boolean sub_op = FALSE;
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Zm | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | Zn | 0 | 0 | 0 | 0 | ZAda | |||||
M | N | S |
if !IsFeatureImplemented(FEAT_SME_MOP4) then EndOfDecode(Decode_UNDEF); constant integer esize = 32; constant integer n = UInt('0':Zn:'0'); constant integer m = UInt('1':Zm:'0'); constant integer nreg = 2; constant integer mreg = 1; constant integer da = UInt(ZAda); constant boolean sub_op = FALSE;
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | Zm | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | Zn | 0 | 0 | 0 | 0 | ZAda | |||||
M | N | S |
if !IsFeatureImplemented(FEAT_SME_MOP4) then EndOfDecode(Decode_UNDEF); constant integer esize = 32; constant integer n = UInt('0':Zn:'0'); constant integer m = UInt('1':Zm:'0'); constant integer nreg = 2; constant integer mreg = 2; constant integer da = UInt(ZAda); constant boolean sub_op = FALSE;
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | Zm | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Zn | 0 | 0 | 1 | ZAda | ||||||
M | N | S |
if !IsFeatureImplemented(FEAT_SME_MOP4) || !IsFeatureImplemented(FEAT_SME_F64F64) then EndOfDecode(Decode_UNDEF); constant integer esize = 64; constant integer n = UInt('0':Zn:'0'); constant integer m = UInt('1':Zm:'0'); constant integer nreg = 1; constant integer mreg = 2; constant integer da = UInt(ZAda); constant boolean sub_op = FALSE;
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | Zm | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Zn | 0 | 0 | 1 | ZAda | ||||||
M | N | S |
if !IsFeatureImplemented(FEAT_SME_MOP4) || !IsFeatureImplemented(FEAT_SME_F64F64) then EndOfDecode(Decode_UNDEF); constant integer esize = 64; constant integer n = UInt('0':Zn:'0'); constant integer m = UInt('1':Zm:'0'); constant integer nreg = 1; constant integer mreg = 1; constant integer da = UInt(ZAda); constant boolean sub_op = FALSE;
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | Zm | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | Zn | 0 | 0 | 1 | ZAda | ||||||
M | N | S |
if !IsFeatureImplemented(FEAT_SME_MOP4) || !IsFeatureImplemented(FEAT_SME_F64F64) then EndOfDecode(Decode_UNDEF); constant integer esize = 64; constant integer n = UInt('0':Zn:'0'); constant integer m = UInt('1':Zm:'0'); constant integer nreg = 2; constant integer mreg = 1; constant integer da = UInt(ZAda); constant boolean sub_op = FALSE;
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | Zm | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | Zn | 0 | 0 | 1 | ZAda | ||||||
M | N | S |
if !IsFeatureImplemented(FEAT_SME_MOP4) || !IsFeatureImplemented(FEAT_SME_F64F64) then EndOfDecode(Decode_UNDEF); constant integer esize = 64; constant integer n = UInt('0':Zn:'0'); constant integer m = UInt('1':Zm:'0'); constant integer nreg = 2; constant integer mreg = 2; constant integer da = UInt(ZAda); constant boolean sub_op = FALSE;
<Zn> |
Is the name of the first source scalable vector register, registers in the range Z0-Z15, encoded as "Zn" times 2. |
<Zm1> |
Is the name of the first scalable vector register of the second source multi-vector group, in the range Z16-Z31, encoded as "Zm" times 2 plus 16. |
<Zm2> |
Is the name of the second scalable vector register of the second source multi-vector group, in the range Z16-Z31, encoded as "Zm" times 2 plus 17. |
<Zm> |
Is the name of the second source scalable vector register, registers in the range Z16-Z31, encoded as "Zm" times 2 plus 16. |
<Zn1> |
Is the name of the first scalable vector register of the first source multi-vector group, in the range Z0-Z15, encoded as "Zn" times 2. |
<Zn2> |
Is the name of the second scalable vector register of the first source multi-vector group, in the range Z0-Z15, encoded as "Zn" times 2 plus 1. |
CheckStreamingSVEAndZAEnabled(); constant integer VL = CurrentVL; constant integer hvsize = VL DIV 2; constant integer dim = hvsize DIV esize; constant integer tilesize = 4*dim*dim*esize; constant bits(tilesize) op3 = ZAtile[da, esize, tilesize]; bits(tilesize) result; for outprod = 0 to 3 constant integer row_hv = outprod DIV 2; constant integer col_hv = outprod MOD 2; constant integer row_base = row_hv * dim; constant integer col_base = col_hv * dim; constant bits(VL) op1 = Z[n + (nreg-1)*col_hv, VL]; constant bits(VL) op2 = Z[m + (mreg-1)*row_hv, VL]; for row = 0 to dim-1 for col = 0 to dim-1 constant integer row_idx = row_base + row; constant integer col_idx = col_base + col; constant integer tile_idx = row_idx * dim * 2 + col_idx; bits(esize) elem1 = Elem[op1, row_idx, esize]; constant bits(esize) elem2 = Elem[op2, col_idx, esize]; constant bits(esize) elem3 = Elem[op3, tile_idx, esize]; if sub_op then elem1 = FPNeg(elem1, FPCR); Elem[result, tile_idx, esize] = FPMulAdd_ZA(elem3, elem1, elem2, FPCR); ZAtile[da, esize, tilesize] = result;
Internal version only: aarchmrs v2024-12_rel, pseudocode v2024-12_rel ; Build timestamp: 2024-12-15T22:18
Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.