FMOP4A (non-widening)

Floating-point quarter-tile outer products, accumulating

This instruction generates four independent quarter-tile floating-point outer products from the sub-matrices in the half-vectors of the one or two first and second source vectors and accumulates the results to the corresponding elements of a 16-bit, 32-bit, or 64-bit element ZA tile.

In case of the half-precision variant, each of the quarter-tile outer products is generated by multiplying the SVLH÷2 × 1 sub-matrix of half-precision values held in the half-vectors of the first source vectors by the 1 × SVLH÷2 sub-matrix of half-precision values held in the half-vectors of the second source vectors. In case of the single-precision variant, each of the quarter-tile outer products is generated by multiplying the SVLS÷2 × 1 sub-matrix of single-precision values held in the half-vectors of the first source vectors by the 1 × SVLS÷2 sub-matrix of single-precision values held in the half-vectors of the second source vectors. In case of the double-precision variant, each of the quarter-tile outer products is generated by multiplying the SVLD÷2 × 1 sub-matrix of double-precision values held in the half-vectors of the first source vectors by the 1 × SVLD÷2 sub-matrix of double-precision values held in the half-vectors of the second source vectors.

The resulting quarter-tile SVLH÷2 × SVLH÷2 half-precision outer products in case of the half-precision variant, SVLS÷2 × SVLS÷2 single-precision outer products in case of the single-precision variant, or SVLD÷2 × SVLD÷2 double-precision outer products in case of the double-precision variant are destructively added to the destination ZA tile. This is equivalent to performing a single multiply-accumulate to each of the destination tile elements.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

It has encodings from 12 classes: Half-precision, single and multiple vectors , Half-precision, single vectors , Half-precision, multiple and single vectors , Half-precision, multiple vectors , Single-precision, single and multiple vectors , Single-precision, single vectors , Single-precision, multiple and single vectors , Single-precision, multiple vectors , Double-precision, single and multiple vectors , Double-precision, single vectors , Double-precision, multiple and single vectors and Double-precision, multiple vectors

Half-precision, single and multiple vectors
(FEAT_SME_MOP4 && FEAT_SME_F16F16)

313029282726252423222120191817161514131211109876543210
100000010001Zm00000000Zn00100ZAda
MNS

Encoding

FMOP4A <ZAda>.H, <Zn>.H, { <Zm1>.H-<Zm2>.H }

Decode for this encoding

if !IsFeatureImplemented(FEAT_SME_MOP4) || !IsFeatureImplemented(FEAT_SME_F16F16) then EndOfDecode(Decode_UNDEF); constant integer esize = 16; constant integer n = UInt('0':Zn:'0'); constant integer m = UInt('1':Zm:'0'); constant integer nreg = 1; constant integer mreg = 2; constant integer da = UInt(ZAda); constant boolean sub_op = FALSE;

Half-precision, single vectors
(FEAT_SME_MOP4 && FEAT_SME_F16F16)

313029282726252423222120191817161514131211109876543210
100000010000Zm00000000Zn00100ZAda
MNS

Encoding

FMOP4A <ZAda>.H, <Zn>.H, <Zm>.H

Decode for this encoding

if !IsFeatureImplemented(FEAT_SME_MOP4) || !IsFeatureImplemented(FEAT_SME_F16F16) then EndOfDecode(Decode_UNDEF); constant integer esize = 16; constant integer n = UInt('0':Zn:'0'); constant integer m = UInt('1':Zm:'0'); constant integer nreg = 1; constant integer mreg = 1; constant integer da = UInt(ZAda); constant boolean sub_op = FALSE;

Half-precision, multiple and single vectors
(FEAT_SME_MOP4 && FEAT_SME_F16F16)

313029282726252423222120191817161514131211109876543210
100000010000Zm00000001Zn00100ZAda
MNS

Encoding

FMOP4A <ZAda>.H, { <Zn1>.H-<Zn2>.H }, <Zm>.H

Decode for this encoding

if !IsFeatureImplemented(FEAT_SME_MOP4) || !IsFeatureImplemented(FEAT_SME_F16F16) then EndOfDecode(Decode_UNDEF); constant integer esize = 16; constant integer n = UInt('0':Zn:'0'); constant integer m = UInt('1':Zm:'0'); constant integer nreg = 2; constant integer mreg = 1; constant integer da = UInt(ZAda); constant boolean sub_op = FALSE;

Half-precision, multiple vectors
(FEAT_SME_MOP4 && FEAT_SME_F16F16)

313029282726252423222120191817161514131211109876543210
100000010001Zm00000001Zn00100ZAda
MNS

Encoding

FMOP4A <ZAda>.H, { <Zn1>.H-<Zn2>.H }, { <Zm1>.H-<Zm2>.H }

Decode for this encoding

if !IsFeatureImplemented(FEAT_SME_MOP4) || !IsFeatureImplemented(FEAT_SME_F16F16) then EndOfDecode(Decode_UNDEF); constant integer esize = 16; constant integer n = UInt('0':Zn:'0'); constant integer m = UInt('1':Zm:'0'); constant integer nreg = 2; constant integer mreg = 2; constant integer da = UInt(ZAda); constant boolean sub_op = FALSE;

Single-precision, single and multiple vectors
(FEAT_SME_MOP4)

313029282726252423222120191817161514131211109876543210
100000000001Zm00000000Zn0000ZAda
MNS

Encoding

FMOP4A <ZAda>.S, <Zn>.S, { <Zm1>.S-<Zm2>.S }

Decode for this encoding

if !IsFeatureImplemented(FEAT_SME_MOP4) then EndOfDecode(Decode_UNDEF); constant integer esize = 32; constant integer n = UInt('0':Zn:'0'); constant integer m = UInt('1':Zm:'0'); constant integer nreg = 1; constant integer mreg = 2; constant integer da = UInt(ZAda); constant boolean sub_op = FALSE;

Single-precision, single vectors
(FEAT_SME_MOP4)

313029282726252423222120191817161514131211109876543210
100000000000Zm00000000Zn0000ZAda
MNS

Encoding

FMOP4A <ZAda>.S, <Zn>.S, <Zm>.S

Decode for this encoding

if !IsFeatureImplemented(FEAT_SME_MOP4) then EndOfDecode(Decode_UNDEF); constant integer esize = 32; constant integer n = UInt('0':Zn:'0'); constant integer m = UInt('1':Zm:'0'); constant integer nreg = 1; constant integer mreg = 1; constant integer da = UInt(ZAda); constant boolean sub_op = FALSE;

Single-precision, multiple and single vectors
(FEAT_SME_MOP4)

313029282726252423222120191817161514131211109876543210
100000000000Zm00000001Zn0000ZAda
MNS

Encoding

FMOP4A <ZAda>.S, { <Zn1>.S-<Zn2>.S }, <Zm>.S

Decode for this encoding

if !IsFeatureImplemented(FEAT_SME_MOP4) then EndOfDecode(Decode_UNDEF); constant integer esize = 32; constant integer n = UInt('0':Zn:'0'); constant integer m = UInt('1':Zm:'0'); constant integer nreg = 2; constant integer mreg = 1; constant integer da = UInt(ZAda); constant boolean sub_op = FALSE;

Single-precision, multiple vectors
(FEAT_SME_MOP4)

313029282726252423222120191817161514131211109876543210
100000000001Zm00000001Zn0000ZAda
MNS

Encoding

FMOP4A <ZAda>.S, { <Zn1>.S-<Zn2>.S }, { <Zm1>.S-<Zm2>.S }

Decode for this encoding

if !IsFeatureImplemented(FEAT_SME_MOP4) then EndOfDecode(Decode_UNDEF); constant integer esize = 32; constant integer n = UInt('0':Zn:'0'); constant integer m = UInt('1':Zm:'0'); constant integer nreg = 2; constant integer mreg = 2; constant integer da = UInt(ZAda); constant boolean sub_op = FALSE;

Double-precision, single and multiple vectors
(FEAT_SME_MOP4 && FEAT_SME_F64F64)

313029282726252423222120191817161514131211109876543210
100000001101Zm00000000Zn001ZAda
MNS

Encoding

FMOP4A <ZAda>.D, <Zn>.D, { <Zm1>.D-<Zm2>.D }

Decode for this encoding

if !IsFeatureImplemented(FEAT_SME_MOP4) || !IsFeatureImplemented(FEAT_SME_F64F64) then EndOfDecode(Decode_UNDEF); constant integer esize = 64; constant integer n = UInt('0':Zn:'0'); constant integer m = UInt('1':Zm:'0'); constant integer nreg = 1; constant integer mreg = 2; constant integer da = UInt(ZAda); constant boolean sub_op = FALSE;

Double-precision, single vectors
(FEAT_SME_MOP4 && FEAT_SME_F64F64)

313029282726252423222120191817161514131211109876543210
100000001100Zm00000000Zn001ZAda
MNS

Encoding

FMOP4A <ZAda>.D, <Zn>.D, <Zm>.D

Decode for this encoding

if !IsFeatureImplemented(FEAT_SME_MOP4) || !IsFeatureImplemented(FEAT_SME_F64F64) then EndOfDecode(Decode_UNDEF); constant integer esize = 64; constant integer n = UInt('0':Zn:'0'); constant integer m = UInt('1':Zm:'0'); constant integer nreg = 1; constant integer mreg = 1; constant integer da = UInt(ZAda); constant boolean sub_op = FALSE;

Double-precision, multiple and single vectors
(FEAT_SME_MOP4 && FEAT_SME_F64F64)

313029282726252423222120191817161514131211109876543210
100000001100Zm00000001Zn001ZAda
MNS

Encoding

FMOP4A <ZAda>.D, { <Zn1>.D-<Zn2>.D }, <Zm>.D

Decode for this encoding

if !IsFeatureImplemented(FEAT_SME_MOP4) || !IsFeatureImplemented(FEAT_SME_F64F64) then EndOfDecode(Decode_UNDEF); constant integer esize = 64; constant integer n = UInt('0':Zn:'0'); constant integer m = UInt('1':Zm:'0'); constant integer nreg = 2; constant integer mreg = 1; constant integer da = UInt(ZAda); constant boolean sub_op = FALSE;

Double-precision, multiple vectors
(FEAT_SME_MOP4 && FEAT_SME_F64F64)

313029282726252423222120191817161514131211109876543210
100000001101Zm00000001Zn001ZAda
MNS

Encoding

FMOP4A <ZAda>.D, { <Zn1>.D-<Zn2>.D }, { <Zm1>.D-<Zm2>.D }

Decode for this encoding

if !IsFeatureImplemented(FEAT_SME_MOP4) || !IsFeatureImplemented(FEAT_SME_F64F64) then EndOfDecode(Decode_UNDEF); constant integer esize = 64; constant integer n = UInt('0':Zn:'0'); constant integer m = UInt('1':Zm:'0'); constant integer nreg = 2; constant integer mreg = 2; constant integer da = UInt(ZAda); constant boolean sub_op = FALSE;

Assembler Symbols

<ZAda>

For the "Half-precision, multiple and single vectors", "Half-precision, multiple vectors", "Half-precision, single and multiple vectors", and "Half-precision, single vectors" variants: is the name of the ZA tile ZA0-ZA1, encoded in the "ZAda" field.

For the "Single-precision, multiple and single vectors", "Single-precision, multiple vectors", "Single-precision, single and multiple vectors", and "Single-precision, single vectors" variants: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

For the "Double-precision, multiple and single vectors", "Double-precision, multiple vectors", "Double-precision, single and multiple vectors", and "Double-precision, single vectors" variants: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda" field.

<Zn>

Is the name of the first source scalable vector register, registers in the range Z0-Z15, encoded as "Zn" times 2.

<Zm1>

Is the name of the first scalable vector register of the second source multi-vector group, in the range Z16-Z31, encoded as "Zm" times 2 plus 16.

<Zm2>

Is the name of the second scalable vector register of the second source multi-vector group, in the range Z16-Z31, encoded as "Zm" times 2 plus 17.

<Zm>

Is the name of the second source scalable vector register, registers in the range Z16-Z31, encoded as "Zm" times 2 plus 16.

<Zn1>

Is the name of the first scalable vector register of the first source multi-vector group, in the range Z0-Z15, encoded as "Zn" times 2.

<Zn2>

Is the name of the second scalable vector register of the first source multi-vector group, in the range Z0-Z15, encoded as "Zn" times 2 plus 1.

Operation

CheckStreamingSVEAndZAEnabled(); constant integer VL = CurrentVL; constant integer hvsize = VL DIV 2; constant integer dim = hvsize DIV esize; constant integer tilesize = 4*dim*dim*esize; constant bits(tilesize) op3 = ZAtile[da, esize, tilesize]; bits(tilesize) result; for outprod = 0 to 3 constant integer row_hv = outprod DIV 2; constant integer col_hv = outprod MOD 2; constant integer row_base = row_hv * dim; constant integer col_base = col_hv * dim; constant bits(VL) op1 = Z[n + (nreg-1)*col_hv, VL]; constant bits(VL) op2 = Z[m + (mreg-1)*row_hv, VL]; for row = 0 to dim-1 for col = 0 to dim-1 constant integer row_idx = row_base + row; constant integer col_idx = col_base + col; constant integer tile_idx = row_idx * dim * 2 + col_idx; bits(esize) elem1 = Elem[op1, row_idx, esize]; constant bits(esize) elem2 = Elem[op2, col_idx, esize]; constant bits(esize) elem3 = Elem[op3, tile_idx, esize]; if sub_op then elem1 = FPNeg(elem1, FPCR); Elem[result, tile_idx, esize] = FPMulAdd_ZA(elem3, elem1, elem2, FPCR); ZAtile[da, esize, tilesize] = result;


Internal version only: aarchmrs v2024-12_rel, pseudocode v2024-12_rel ; Build timestamp: 2024-12-15T22:18

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.