FDOT (2-way, multiple and indexed vector, FP16 to FP32)

Multi-vector half-precision floating-point dot-product by indexed element

The instruction computes the fused sum-of-products of a pair of half-precision floating-point values held in the corresponding 32-bit elements of the two or four first source vectors and the indexed 32-bit element of the second source vector, without intermediate rounding. The single-precision sum-of-products are destructively added to the corresponding single-precision elements of the ZA single-vector groups.

The half-precision floating-point pairs within the second source vector are specified using an immediate index which selects the same pair position within each 128-bit vector segment. The element index range is from 0 to 3.

The single-vector group within each half of or each quarter of the ZA array is selected by the sum of the vector select register and offset , modulo half or quarter the number of ZA array vectors.

The vector group symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector groups respectively. The vector group symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

It has encodings from 2 classes: Two ZA single-vectors and Four ZA single-vectors

Two ZA single-vectors
(FEAT_SME2)

313029282726252423222120191817161514131211109876543210
110000010101Zm0Rv1i2Zn001off3
opopc2

Encoding

FDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

Decode for this encoding

if !IsFeatureImplemented(FEAT_SME2) then EndOfDecode(Decode_UNDEF); constant integer v = UInt('010':Rv); constant integer n = UInt(Zn:'0'); constant integer m = UInt('0':Zm); constant integer offset = UInt(off3); constant integer index = UInt(i2); constant integer nreg = 2;

Four ZA single-vectors
(FEAT_SME2)

313029282726252423222120191817161514131211109876543210
110000010101Zm1Rv1i2Zn0001off3
opopc2

Encoding

FDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

Decode for this encoding

if !IsFeatureImplemented(FEAT_SME2) then EndOfDecode(Decode_UNDEF); constant integer v = UInt('010':Rv); constant integer n = UInt(Zn:'00'); constant integer m = UInt('0':Zm); constant integer offset = UInt(off3); constant integer index = UInt(i2); constant integer nreg = 4;

Assembler Symbols

<Wv>

Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs>

Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1>

For the "Two ZA single-vectors" variant: is the name of the first scalable vector register of the first source multi-vector group, encoded as "Zn" times 2.

For the "Four ZA single-vectors" variant: is the name of the first scalable vector register of the first source multi-vector group, encoded as "Zn" times 4.

<Zn2>

Is the name of the second scalable vector register of the first source multi-vector group, encoded as "Zn" times 2 plus 1.

<Zm>

Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index>

Is the immediate index of a group of two 16-bit elements within each 128-bit vector segment, in the range 0 to 3, encoded in the "i2" field.

<Zn4>

Is the name of the fourth scalable vector register of the first source multi-vector group, encoded as "Zn" times 4 plus 3.

Operation

CheckStreamingSVEAndZAEnabled(); constant integer VL = CurrentVL; constant integer elements = VL DIV 32; constant integer vectors = VL DIV 8; constant integer vstride = vectors DIV nreg; constant integer eltspersegment = 128 DIV 32; constant bits(32) vbase = X[v, 32]; integer vec = (UInt(vbase) + offset) MOD vstride; bits(VL) result; for r = 0 to nreg-1 constant bits(VL) operand1 = Z[n+r, VL]; constant bits(VL) operand2 = Z[m, VL]; constant bits(VL) operand3 = ZAvector[vec, VL]; for e = 0 to elements-1 constant bits(16) elt1_a = Elem[operand1, 2 * e + 0, 16]; constant bits(16) elt1_b = Elem[operand1, 2 * e + 1, 16]; constant integer segmentbase = e - (e MOD eltspersegment); constant integer s = segmentbase + index; constant bits(16) elt2_a = Elem[operand2, 2 * s + 0, 16]; constant bits(16) elt2_b = Elem[operand2, 2 * s + 1, 16]; bits(32) sum = Elem[operand3, e, 32]; sum = FPDotAdd_ZA(sum, elt1_a, elt1_b, elt2_a, elt2_b, FPCR); Elem[result, e, 32] = sum; ZAvector[vec, VL] = result; vec = vec + vstride;


Internal version only: aarchmrs v2024-12_rel, pseudocode v2024-12_rel ; Build timestamp: 2024-12-15T22:18

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.