Cage

Hardware-Accelerated Safe WebAssembly

Martin Fink, Dimitrios Stavrakakis, Dennis Sprokholt, Soham Chakraborty,

Jan-Erik Ekberg, and Pramod Bhatotia
CGO’25 | March 4th 2025 | Las Vegas, Nevada, USA

Technical University of Munich | Systems Research Group

1

WebAssembly

C
@ > Compiler >M—runs on— Hﬂ o
-

* \ersatile compilation target

 Portable and near-native performance

e No direct access to host resources

Security Guarantees of WebAssembly

d &

J

e Provides a sandboxed execution environment

Tt

Tt

Security Guarantees of WebAssembly

e Provides a sandboxed execution environment

* No memory safety guarantees for programs in memory-unsafe languages

free(buffer);
buffer[index] buffer[index];
Spatia| s g Tempora|
Memory Safety L J - J Memory Safety

h g h
buffer free(buffer)

Example: A Real-World Vulnerability

Browser

0

A

 CVE-2023-4863: Heap buffer overflow in libwebp
 Buggy library can be exploited

» WebAssembly does not protect against such exploits!

4

Malicious WEBP
Image

Memory Safety Issues

o~ Google Project Zero
J 72% of “in the wild” 0-days are memory safety bugs [1]

u Microsoft
B 70% of vulnerabilities in security patches are memory safety violations [2]
Android

android * 24% of vulnerabilities are memory safety issues (down from 70% in 2019) [3]

[1] Google Project Zero: https://docs.google.com/spreadsheets/d/1IkNJOuQwbeC1ZTRrxdtuPLCII7mlIUreoKfSlgajnSyY/view
[2] Microsoft: https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
[3] Android: https://security.googleblog.com/2024/09/eliminating-memory-safety-vulnerabilities-Android.html

5

Software-Based Approach

Deterministic Bounds Checking

arraylindex]

_

S

J

if (laccess valid(array, index)) {
abort();
}

arraylindex]

 Address Sanitizer: Average slowdown of 73% [4]

[4] Serebryany, Konstantin, et al. "AddressSanitizer: A fast address sanity checker." 2012 USENIX annual technical conference (USENIX ATC 12). 2012

6

Software-Based Approach

Deterministic Bounds Checking

arraylindex]

if (laccess valid(array, index)) {
abort();
}

array[index]

 Address Sanitizer: Average slowdown of 73% [4]

Not suitable for production deployment!

[4] Serebryany, Konstantin, et al. "AddressSanitizer: A fast address sanity checker." 2012 USENIX annual technical conference (USENIX ATC 12). 2012

6

Problem Statement

How can we provide memory safety for WebAssembly with

low performance and memory overheads?

Design Goals

« Memory Safety: spatial and temporal
 Transparency:. no modification to existing code
 Portability: hardware-independent abstraction

e Security: WebAssembly modules might be adversarial

—

—

Low Overheads:
* Performance
 Memory Usage
» Sandboxing

Outline

 Design

> Internal Memory Safety

> External Memory Safety (Sandboxing)

> Combining Internal and External Memory Safety
* |mplementation

e Evaluation

Key Ideas

~N

WASM Runtlme

————————————————

Unmodified
source code

LLVM WASM . g

Key Ideas

WASM Runtime

————————————————

N m 5 WASM Sandbox

Unmodified
source code

WASM Li[l:ﬁl} HW ExtensionsJ

HW-aware
runtime

 Hardware-acceleration in CPUs (e.g., Arm MTE)

Key Ideas

Unmodified
source code

WASM Runtime

k MJ ' WASM Sandbox

MO(_JIIerd _ L LVM Extended L{@} HW ExtensionsJ
standard library WASM
HW-aware
runtime

 Hardware-acceleration in CPUs (e.g., Arm MTE)

* (Generic abstraction in WebAssembly: tagged pointers and segments

Key Ideas

Unmodified
source code

WASM Runtime

————————————————

) MJ ' WASM Sandbox |

MO(_JIIerd _ L LVM Extended L{@} HW ExtensionsJ
standard library WASM
HW-aware
runtime

 Hardware-acceleration in CPUs (e.g., Arm MTE)

* (Generic abstraction in WebAssembly: tagged pointers and segments

Tt

ARM Memory Tagging Extension (MTE)

4 bit 48 bit
H'—J . Y)
tag address
16 bytes

tag -— ey

* 4 bit tag in unused address bits
* 16 byte granularity

 [ag mismatch is caught by hardware

Tt

ARM Memory Tagging Extension (MTE)

4 bit 48 bit
H'—J . Y)
tag address

16 bytes

tag -— ey

* 4 bit tag in unused address bits
* 16 byte granularity

 [ag mismatch is caught by hardware

11

Tt

ARM Memory Tagging Extension (MTE)

4 bit 48 bit
H'—J L Y)
tag address
16 bytes
tag R Y D D D |

* 4 bit tag in unused address bits
* 16 byte granularity

 [ag mismatch is caught by hardware

12

Tt

ARM Memory Tagging Extension (MTE)

tag address
16 bytes

tag I A A A AN R I

* 4 bit tag in unused address bits
* 16 byte granularity

 [ag mismatch is caught by hardware

13

Tt

ARM Memory Tagging Extension (MTE)

4 b1t 48 bit
tag address
16 bytes

tag

* Probabilistic Memory Safety

* 10 distinct tags — tag collisions

14

Memory Segments

char *pointer = malloc(32);

$pointer
ooy |
Memory

Memory Segments
Memory Segments and Tagged Pointers
char xpointer = malloc(32); segment.new $ptr $len

Memory

16

Memory Segments
Spatial Memory Safety Violations

char xpointer = malloc(32); segment.new $ptr $len
pointer[40];

. spatial memory safety violation
$pointer f------------
Memory

17

Memory Segments

Temporal Memory Safety Violations

char xpointer = malloc(32); segment.free $ptr $len
free(pointer); segment.set_tag $ptr $tag $len
pointer[24];

$pointer f--
 temporal memory safety violation

18

Memory

Outline

 Design

> External Memory Safety (Sandboxing)
> Combining Internal and External Memory Safety
* |mplementation

e Evaluation

19

External Memory Safety

--

Instance #1

[hoapbase | [Cnemmwemoy |

am == EN BN BN B B B . N SN BN BN BN BN BN BN BN BN BN BEN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BEE BEE BEE BEE BEE BEE BEE BEE BEE BN B B B B B B B B B B B B

Memory

 Sandboxing using guard pages
* Allocate 232 = 4 GiB of virtual memory per sandbox
* Only possible for 32-bit WebAssembly

20

External Memory Safety

--

a Em En E e B e Ee e s O B BN D B B S S O B I S B B S S B B S B B I B B B B B I B B B B B B B I S B I I S I S S e B e e e e o e em ol EE B B B B Em am

Memory

 Sandboxing using guard pages
* Allocate 232 = 4 GiB of virtual memory per sandbox
* Only possible for 32-bit WebAssembly

20

External Memory Safety

--

Instance #1

“heapbase | [Gnearmemoy |

am == EN BN BN B B B . N SN BN BN BN BN BN BN BN BN BN BEN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BEE BEE BEE BEE BEE BEE BEE BEE BEE BN B B B B B B B B B B B B

Memory

MTE Tags

* Assign distinct tag for each sandbox
 Perform access relative to tagged base pointer

21

External Memory Safety

--

a Em En E e B e Ee e s O B BN D B B S S O B I S B B S S B B S B B I B B B B B I B B B B B B B I S B I I S I S S e B e e e e o e em ol EE B B B B Em am

Memory

MTE Tags

* Assign distinct tag for each sandbox
 Perform access relative to tagged base pointer

21

Outline

 Background and Motivation
 Design

> Internal Memory Safety

> External Memory Safety (Sandboxing)

> Combining Internal and External Memory Safety
* |mplementation

e Evaluation

22

TUTI
Combining Memory Safety and Sandboxing

B [e pfmesc
ESal TN
1 TN

o Split tag bits

> Up to four bits for sandboxing
> Remaining bits for memory safety within the sandbox

 On address translation, mask out runtime-reserved bits

23

TUTI
Combining Memory Safety and Sandboxing

[e
aod— [| adoress
[f [nembase

o Split tag bits

> Up to four bits for sandboxing
> Remaining bits for memory safety within the sandbox

 On address translation, mask out runtime-reserved bits

Outline

 Background and Motivation
* Design
 Implementation

e Evaluation

25

Implementation

Implementation

Unmodified
source code

//,/ S \\\
”/ /// .
| |

—> [Optimizer Sanitizer —> Codegen — m |

Modified Extended
LLVM WASM

Compiler Toolchain
e LLVM 17

e Sanitizer passes

26

Implementation

y N
y p— p
y N
|
|

Unmodified
source code

—> [Optimizer Sanitizer —> Codegen [— m

Modified
wasi-libc Modified Extended
LLVM WASM
Compiler Toolchain Libc
e LLVM 17 e wasi-libc
e Sanitizer passes e 64-bit WASM

 Memory-safe allocator

26

Tt

Implementation
Unmodified A
source code | N wasmtime
—> [Optimizer Sanitizer —> Codegen — m >
) | | CES
Modified
wasi-libc Modified Extended MTE-aware
LLVM WASM runtime
Compiler Toolchain Libc WASM Runtime
e LLVM 17 e wasi-libc e wasmtime 16
e Sanitizer passes * 64-bit WASM » MTE-based memory safety

» Memory-safe allocator « MTE-based sandboxing

26

Outline

 Background and Motivation
* Design
o |Implementation

e Evaluation

27

Tt

Runtime Overheads
PolyBench/C on Google Pixel 8

125% .
100 100 Lower is better |
100% 04.4
250 B 32-bit WASM
0
" 64-bit WASM
50%
. Cage memory safety
25%
’ Cage memory safety + sandboxing
0%

High-Performance Core Low-Performance Core

Baselines: 32-bit WASM 34.5—5.6% faster than 64-bit

WASM

28

Tt

Runtime Overheads
PolyBench/C on Google Pixel 8

125% .
100 103.6 100 101.5 Lower is better |
100% 04.4
oy B 32-bit WASM
0]
" 64-bit WASM
50%
. Cage memory safety
25%

Cage memory safety + sandboxing

0%
High-Performance Core Low-Performance Core

Memory Safety: 1.5—3.6% overhead

Address Sanitizer: Runtime overheads of > 70%

28

Tt

Runtime Overheads
PolyBench/C on Google Pixel 8

125% .
(009, ona 100 103.6 o g 100 101.5 Lower is better |
A .
oy 70.7 B 32-bit WASM
A .
" 64-bit WASM
50%
. Cage memory safety
25%
’ Cage memory safety + sandboxing
0%
High-Performance Core Low-Performance Core

Combined with MTE-based sandboxing: 2.1 —29.3%

speedup

28

Tt

Runtime Overheads
PolyBench/C on Google Pixel 8

125% .
(009, ona 100 103.6 o g 100 101.5 Lower is better |
A .
oy 70.7 N 32-bit WASM
A .
0%/ | 64-bit WASM
0)
. Cage memory safety
25%
’ Cage memory safety + sandboxing
0%
High-Performance Core Low-Performance Core

Minimal overheads for production deployments,

speedups compared to 64-bit WASM!

28

Memory Overheads
PolyBench/C on Google Pixel 8

125%

100 100.6 102.3

1009% .
° Lower is better |

5%
B 32-bit WASM
50%
" 64-bit WASM

25%
° . Cage

0%
Memory Overheads

29

Memory Overheads
PolyBench/C on Google Pixel 8

125%

100 100.6 102.3

100% .
° Lower is better |

5%
B 32-bit WASM
50%
| 64-bit WASM

25N
° . Cage

0%
Memory Overheads

Cage introduces minimal memory overheads (~5.3%)

Address sanitizer incurs much larger overheads (2-3x)

29

Outlook

Growing Importance of Memory Safety

Outlook

Growing Importance of Memory Safety

e Sensitive data is located on mobile devices and in the cloud

30

Outlook

Growing Importance of Memory Safety

e Sensitive data is located on mobile devices and in the cloud

 Memory-safe languages, testing, and fuzzing are insufficient

30

Outlook

Growing Importance of Memory Safety

* Sensitive data is located on mobile devices and in the cloud
 Memory-safe languages, testing, and fuzzing are insufficient

» Memory safety deployed in production increases trust

30

Outlook

Growing Importance of Memory Safety

* Sensitive data is located on mobile devices and in the cloud
 Memory-safe languages, testing, and fuzzing are insufficient

» Memory safety deployed in production increases trust

Hardware-Assisted Memory Safety

30

Outlook

Growing Adoption of Memory Safety Extensions

31

Outlook

Growing Adoption of Memory Safety Extensions

 CPU manufacturers are integrating memory safety extensions

> Arm MTE, Arm PAC, CHERI, Intel MPK, ...

31

Outlook

Growing Adoption of Memory Safety Extensions

 CPU manufacturers are integrating memory safety extensions
> Arm MTE, Arm PAC, CHERI, Intel MPK, ...
 Widespread deployment in production environments

> MTE: Google Pixel, Ampere One

31

Outlook

Growing Adoption of Memory Safety Extensions

 CPU manufacturers are integrating memory safety extensions
> Arm MTE, Arm PAC, CHERI, Intel MPK, ...

 Widespread deployment in production environments
> MTE: Google Pixel, Ampere One

» Differing tradeoffs

> Capabilities vs. tagged memory, ...

31

Summary

 Memory Safety Extension for 64-bit WebAssembly

* Implementation using Arm MTE
* Overheads <5.6%, speedups when using MTE for sandboxing

 More details, such as formalization, evaluation, and pointer authentication in the paper!

Source Code

32

