
Technical University of Munich | Systems Research Group

Cage
Hardware-Accelerated Safe WebAssembly
Martin Fink, Dimitrios Stavrakakis, Dennis Sprokholt, Soham Chakraborty,

Jan-Erik Ekberg, and Pramod Bhatotia

1

CGO’25 | March 4th 2025 | Las Vegas, Nevada, USA

WebAssembly

• Versatile compilation target

• Portable and near-native performance

• No direct access to host resources

2

Title

runs onCompiler

3

Security Guarantees of WebAssembly

• Provides a sandboxed execution environment

Title

buffer

buffer[index]

free(buffer)

free(buffer);
buffer[index];

0

3

Security Guarantees of WebAssembly

• Provides a sandboxed execution environment

• No memory safety guarantees for programs in memory-unsafe languages

Title

buffer

buffer[index]

free(buffer)

free(buffer);
buffer[index];

0

Title

buffer

buffer[index]

free(buffer)

free(buffer);
buffer[index];

0

Spatial
Memory Safety

Temporal
Memory Safety

4

Example: A Real-World Vulnerability

• CVE-2023-4863: Heap buffer overflow in libwebp

• Buggy library can be exploited

• WebAssembly does not protect against such exploits!

Title

0

WebAssembly Sandbox

0

Malicious WEBP
Imagelibwebp

Code

Secret Data

Browser

5

Memory Safety Issues

Microsoft
• 70% of vulnerabilities in security patches are memory safety violations [2]

Android
• 24% of vulnerabilities are memory safety issues (down from 70% in 2019) [3]

Google Project Zero
• 72% of “in the wild” 0-days are memory safety bugs [1]

[1] Google Project Zero: https://docs.google.com/spreadsheets/d/1lkNJ0uQwbeC1ZTRrxdtuPLCIl7mlUreoKfSIgajnSyY/view

[2] Microsoft: https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/

[3] Android: https://security.googleblog.com/2024/09/eliminating-memory-safety-vulnerabilities-Android.html

6

Software-Based Approach

• Address Sanitizer: Average slowdown of 73% [4]

Deterministic Bounds Checking

[4] Serebryany, Konstantin, et al. "AddressSanitizer: A fast address sanity checker." 2012 USENIX annual technical conference (USENIX ATC 12). 2012

Title

0

Subtitle

array[index]

if (!access_valid(array, index)) {
 abort();
}
array[index]

6

Software-Based Approach

• Address Sanitizer: Average slowdown of 73% [4]

Deterministic Bounds Checking

[4] Serebryany, Konstantin, et al. "AddressSanitizer: A fast address sanity checker." 2012 USENIX annual technical conference (USENIX ATC 12). 2012

Title

0

Subtitle

array[index]

if (!access_valid(array, index)) {
 abort();
}
array[index]

Not suitable for production deployment!

Problem Statement

• Memory Safety: spatial and temporal

• Transparency: no modification to existing code

• Portability: hardware-independent abstraction

• Security: WebAssembly modules might be adversarial

Design Goals

Title

0

Low Overheads:
• Performance

• Memory Usage

• Sandboxing

How can we provide memory safety for WebAssembly with

low performance and memory overheads?

7

Outline
• Background and Motivation

• Design

‣ Internal Memory Safety

‣ External Memory Safety (Sandboxing)

‣ Combining Internal and External Memory Safety

• Implementation

• Evaluation

8

Key Ideas

9

Title

0

LLVM WASM

WASM Runtime

WASM Sandbox
Unmodified
source code

Key Ideas

9

• Hardware-acceleration in CPUs (e.g., Arm MTE)

Title

0

LLVM WASM

WASM Runtime

WASM Sandbox
Unmodified
source code

Title

0

HW-aware
runtime

WASM Runtime

HW Extensions

WASM Sandbox

LLVM WASM

Unmodified
source code

Key Ideas

9

• Hardware-acceleration in CPUs (e.g., Arm MTE)

• Generic abstraction in WebAssembly: tagged pointers and segments

Title

0

LLVM WASM

WASM Runtime

WASM Sandbox
Unmodified
source code

Title

0

HW-aware
runtime

WASM Runtime

HW Extensions

WASM Sandbox

LLVM WASM

Unmodified
source code

Title

0

HW-aware
runtime

WASM Runtime

HW Extensions

WASM Sandbox

LLVM Extended
WASM

Unmodified
source code

Title

0

Unmodified
source code

Modified
standard library

HW-aware
runtime

WASM Runtime

HW Extensions

WASM Sandbox

LLVM Extended
WASM

Key Ideas

9

• Hardware-acceleration in CPUs (e.g., Arm MTE)

• Generic abstraction in WebAssembly: tagged pointers and segments

Title

0

LLVM WASM

WASM Runtime

WASM Sandbox
Unmodified
source code

Title

0

HW-aware
runtime

WASM Runtime

HW Extensions

WASM Sandbox

LLVM WASM

Unmodified
source code

Title

0

HW-aware
runtime

WASM Runtime

HW Extensions

WASM Sandbox

LLVM Extended
WASM

Unmodified
source code

Title

0

Unmodified
source code

Modified
standard library

HW-aware
runtime

WASM Runtime

HW Extensions

WASM Sandbox

LLVM Extended
WASM

Title

0

Unmodified
source code

Modified
standard library

HW-aware
runtime

WASM Runtime

HW Extensions

WASM Sandbox

LLVM Extended
WASM

10

ARM Memory Tagging Extension (MTE)

• 4 bit tag in unused address bits

• 16 byte granularity

• Tag mismatch is caught by hardware

Title

0

address

memory
tag

pointer

tag

48 bit4 bit

16 bytes

11

ARM Memory Tagging Extension (MTE)

• 4 bit tag in unused address bits

• 16 byte granularity

• Tag mismatch is caught by hardware

Title

0

addresstag

48 bit4 bit

16 bytes

memory
tag

pointer

12

ARM Memory Tagging Extension (MTE)

• 4 bit tag in unused address bits

• 16 byte granularity

• Tag mismatch is caught by hardware

Title

0

addresstag

48 bit4 bit

16 bytes

segment 1memory
tag

pointer

13

ARM Memory Tagging Extension (MTE)

• 4 bit tag in unused address bits

• 16 byte granularity

• Tag mismatch is caught by hardware

Title

0

addresstag

48 bit4 bit

16 bytes

memory
tag

pointer

14

ARM Memory Tagging Extension (MTE)

• Probabilistic Memory Safety

• 16 distinct tags → tag collisions

Tradeoffs
Title

0

addresstag

48 bit4 bit

16 bytes

segment 1segment 2memory
tag

pointer

15

Memory Segments
char *pointer = malloc(32);

Title

0

Linear
Memory

$pointer

16

Memory Segments
char *pointer = malloc(32);

Memory Segments and Tagged Pointers
Title

0

Linear
Memory

$pointer

segment.new $ptr $len

17

Memory Segments
char *pointer = malloc(32);
pointer[40];

Spatial Memory Safety Violations
Title

0

Linear
Memory

$pointer
spatial memory safety violation

segment.new $ptr $len

18

Memory Segments
char *pointer = malloc(32);
free(pointer);
pointer[24];

Temporal Memory Safety Violations
Title

0

Linear
Memory

$pointer
temporal memory safety violation

segment.free $ptr $len
segment.set_tag $ptr $tag $len

Outline
• Background and Motivation

• Design

‣ Internal Memory Safety

‣External Memory Safety (Sandboxing)

‣ Combining Internal and External Memory Safety

• Implementation

• Evaluation

19

20

External Memory Safety

• Sandboxing using guard pages

• Allocate 2³² = 4 GiB of virtual memory per sandbox

• Only possible for 32-bit WebAssembly

Title

0

Process
Memory

Instance #1

heap base

4 GiB

Linear Memory

20

External Memory Safety

• Sandboxing using guard pages

• Allocate 2³² = 4 GiB of virtual memory per sandbox

• Only possible for 32-bit WebAssembly

Title

0

Process
Memory

Instance #1

heap base

4 GiB 4 GiB

Linear Memory

#2

21

External Memory Safety

• Assign distinct tag for each sandbox

• Perform access relative to tagged base pointer

Title

0

Linear Memoryheap base

Tags

Process
Memory

MTE

Instance #1

21

External Memory Safety

• Assign distinct tag for each sandbox

• Perform access relative to tagged base pointer

Title

0

Linear Memoryheap base

Tags

Process
Memory

MTE

Instance #1 #2

Outline
• Background and Motivation

• Design

‣ Internal Memory Safety

‣ External Memory Safety (Sandboxing)

‣Combining Internal and External Memory Safety

• Implementation

• Evaluation

22

Combining Memory Safety and Sandboxing

• Split tag bits

‣ Up to four bits for sandboxing

‣ Remaining bits for memory safety within the sandbox

• On address translation, mask out runtime-reserved bits

23

Title

0

index

heap base

address

mask

add

Combining Memory Safety and Sandboxing

24

Title

0

index

heap base

address

mask

add

• Split tag bits

‣ Up to four bits for sandboxing

‣ Remaining bits for memory safety within the sandbox

• On address translation, mask out runtime-reserved bits

Outline
• Background and Motivation

• Design

• Implementation

• Evaluation

25

Implementation

26

Title

0

Modified
LLVM

Optimizer Sanitizer Codegen
wasmtime

MTE

Unmodified
source code

Modified
wasi-libc Extended

WASM
MTE-aware

runtime

Implementation

• LLVM 17

• Sanitizer passes

26

Compiler Toolchain

Title

0

Modified
LLVM

Optimizer Sanitizer Codegen
wasmtime

MTE

Unmodified
source code

Modified
wasi-libc Extended

WASM
MTE-aware

runtime

Title

0

Modified
LLVM

Optimizer Sanitizer Codegen
wasmtime

MTE

Unmodified
source code

Modified
wasi-libc Extended

WASM
MTE-aware

runtime

Title

0

Modified
LLVM

Optimizer Sanitizer Codegen
wasmtime

MTE

Unmodified
source code

Modified
wasi-libc Extended

WASM
MTE-aware

runtime

Implementation

• LLVM 17

• Sanitizer passes

26

• wasi-libc

• 64-bit WASM

• Memory-safe allocator

Compiler Toolchain Libc

Title

0

Modified
LLVM

Optimizer Sanitizer Codegen
wasmtime

MTE

Unmodified
source code

Modified
wasi-libc Extended

WASM
MTE-aware

runtime

Title

0

Modified
LLVM

Optimizer Sanitizer Codegen
wasmtime

MTE

Unmodified
source code

Modified
wasi-libc Extended

WASM
MTE-aware

runtime

Title

0

Modified
LLVM

Optimizer Sanitizer Codegen
wasmtime

MTE

Unmodified
source code

Modified
wasi-libc Extended

WASM
MTE-aware

runtime

Title

0

Modified
LLVM

Optimizer Sanitizer Codegen
wasmtime

MTE

Unmodified
source code

Modified
wasi-libc Extended

WASM
MTE-aware

runtime

Implementation

• LLVM 17

• Sanitizer passes

26

• wasi-libc

• 64-bit WASM

• Memory-safe allocator

• wasmtime 16

• MTE-based memory safety

• MTE-based sandboxing

Compiler Toolchain Libc WASM Runtime

Title

0

Modified
LLVM

Optimizer Sanitizer Codegen
wasmtime

MTE

Unmodified
source code

Modified
wasi-libc Extended

WASM
MTE-aware

runtime

Title

0

Modified
LLVM

Optimizer Sanitizer Codegen
wasmtime

MTE

Unmodified
source code

Modified
wasi-libc Extended

WASM
MTE-aware

runtime

Title

0

Modified
LLVM

Optimizer Sanitizer Codegen
wasmtime

MTE

Unmodified
source code

Modified
wasi-libc Extended

WASM
MTE-aware

runtime

Title

0

Modified
LLVM

Optimizer Sanitizer Codegen
wasmtime

MTE

Unmodified
source code

Modified
wasi-libc Extended

WASM
MTE-aware

runtime

Title

0

Modified
LLVM

Optimizer Sanitizer Codegen
wasmtime

MTE

Unmodified
source code

Modified
wasi-libc Extended

WASM
MTE-aware

runtime

Outline
• Background and Motivation

• Design

• Implementation

• Evaluation

27

Runtime Overheads
PolyBench/C on Google Pixel 8

28

0%

25%

50%

75%

100%

125%

High-Performance Core Low-Performance Core

Lower is better ↓

32-bit WASM

64-bit WASM

Cage memory safety

Cage memory safety + sandboxing

94.4 100

65.6

100

Baselines: 32-bit WASM 34.5—5.6% faster than 64-bit
WASM

Runtime Overheads
PolyBench/C on Google Pixel 8

28

0%

25%

50%

75%

100%

125%

High-Performance Core Low-Performance Core

Lower is better ↓

32-bit WASM

64-bit WASM

Cage memory safety

Cage memory safety + sandboxing

94.4 100 103.6

65.6

100 101.5

Memory Safety: 1.5—3.6% overhead

Address Sanitizer: Runtime overheads of > 70%

Runtime Overheads
PolyBench/C on Google Pixel 8

28

0%

25%

50%

75%

100%

125%

High-Performance Core Low-Performance Core

Lower is better ↓

32-bit WASM

64-bit WASM

Cage memory safety

Cage memory safety + sandboxing

94.4 100 103.6 97.9

65.6

100 101.5

70.7

Combined with MTE-based sandboxing: 2.1—29.3%
speedup

Runtime Overheads
PolyBench/C on Google Pixel 8

28

0%

25%

50%

75%

100%

125%

High-Performance Core Low-Performance Core

Lower is better ↓

32-bit WASM

64-bit WASM

Cage memory safety

Cage memory safety + sandboxing

94.4 100 103.6 97.9

65.6

100 101.5

70.7

Minimal overheads for production deployments,
speedups compared to 64-bit WASM!

Memory Overheads
PolyBench/C on Google Pixel 8

29

0%

25%

50%

75%

100%

125%

Memory Overheads

Lower is better ↓

32-bit WASM

64-bit WASM

Cage

100 100.6 105.3

Memory Overheads
PolyBench/C on Google Pixel 8

29

0%

25%

50%

75%

100%

125%

Memory Overheads

Lower is better ↓

32-bit WASM

64-bit WASM

Cage

100 100.6 105.3

Cage introduces minimal memory overheads (~5.3%)

Address sanitizer incurs much larger overheads (2-3x)

Outlook

30

Growing Importance of Memory Safety

Outlook

• Sensitive data is located on mobile devices and in the cloud

30

Growing Importance of Memory Safety

Outlook

• Sensitive data is located on mobile devices and in the cloud

• Memory-safe languages, testing, and fuzzing are insufficient

30

Growing Importance of Memory Safety

Outlook

• Sensitive data is located on mobile devices and in the cloud

• Memory-safe languages, testing, and fuzzing are insufficient

• Memory safety deployed in production increases trust

30

Growing Importance of Memory Safety

Outlook

• Sensitive data is located on mobile devices and in the cloud

• Memory-safe languages, testing, and fuzzing are insufficient

• Memory safety deployed in production increases trust

30

Growing Importance of Memory Safety

Hardware-Assisted Memory Safety

Outlook
Growing Adoption of Memory Safety Extensions

31

Outlook
Growing Adoption of Memory Safety Extensions

• CPU manufacturers are integrating memory safety extensions

‣ Arm MTE, Arm PAC, CHERI, Intel MPK, …

31

Outlook
Growing Adoption of Memory Safety Extensions

• CPU manufacturers are integrating memory safety extensions

‣ Arm MTE, Arm PAC, CHERI, Intel MPK, …

• Widespread deployment in production environments

‣ MTE: Google Pixel, Ampere One

31

Outlook
Growing Adoption of Memory Safety Extensions

• CPU manufacturers are integrating memory safety extensions

‣ Arm MTE, Arm PAC, CHERI, Intel MPK, …

• Widespread deployment in production environments

‣ MTE: Google Pixel, Ampere One

• Differing tradeoffs

‣ Capabilities vs. tagged memory, …

31

Summary
• Memory Safety Extension for 64-bit WebAssembly

• Implementation using Arm MTE

• Overheads <5.6%, speedups when using MTE for sandboxing

• More details, such as formalization, evaluation, and pointer authentication in the paper!

32

Paper Source Code

