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WebAssembly

• Versatile compilation target


• Portable and near-native performance


• No direct access to host resources
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Security Guarantees of WebAssembly

• Provides a sandboxed execution environment
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Security Guarantees of WebAssembly

• Provides a sandboxed execution environment

• No memory safety guarantees for programs in memory-unsafe languages
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Example: A Real-World Vulnerability

• CVE-2023-4863: Heap buffer overflow in libwebp


• Buggy library can be exploited


• WebAssembly does not protect against such exploits!

Title

0

WebAssembly Sandbox

0

Malicious WEBP
Imagelibwebp

Code

Secret Data

Browser



5

Memory Safety Issues

Microsoft 
• 70% of vulnerabilities in security patches are memory safety violations [2]

Android 
• 24% of vulnerabilities are memory safety issues (down from 70% in 2019) [3]

Google Project Zero 
• 72% of “in the wild” 0-days are memory safety bugs [1]

[1] Google Project Zero: https://docs.google.com/spreadsheets/d/1lkNJ0uQwbeC1ZTRrxdtuPLCIl7mlUreoKfSIgajnSyY/view

[2] Microsoft: https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/

[3] Android: https://security.googleblog.com/2024/09/eliminating-memory-safety-vulnerabilities-Android.html
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Software-Based Approach

• Address Sanitizer: Average slowdown of 73% [4]

Deterministic Bounds Checking

[4] Serebryany, Konstantin, et al. "AddressSanitizer: A fast address sanity checker." 2012 USENIX annual technical conference (USENIX ATC 12). 2012

Title

0

Subtitle

array[index]

if (!access_valid(array, index)) {
  abort();
}
array[index]



6

Software-Based Approach

• Address Sanitizer: Average slowdown of 73% [4]

Deterministic Bounds Checking

[4] Serebryany, Konstantin, et al. "AddressSanitizer: A fast address sanity checker." 2012 USENIX annual technical conference (USENIX ATC 12). 2012
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if (!access_valid(array, index)) {
  abort();
}
array[index]

Not suitable for production deployment!



Problem Statement

• Memory Safety: spatial and temporal

• Transparency: no modification to existing code

• Portability: hardware-independent abstraction

• Security: WebAssembly modules might be adversarial

Design Goals
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Low Overheads: 
• Performance

• Memory Usage

• Sandboxing

How can we provide memory safety for WebAssembly with

low performance and memory overheads?
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Outline
• Background and Motivation


• Design 

‣ Internal Memory Safety


‣ External Memory Safety (Sandboxing)


‣ Combining Internal and External Memory Safety


• Implementation


• Evaluation
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Key Ideas
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Key Ideas
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• Hardware-acceleration in CPUs (e.g., Arm MTE)
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Key Ideas
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• Hardware-acceleration in CPUs (e.g., Arm MTE)

• Generic abstraction in WebAssembly: tagged pointers and segments
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Key Ideas
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• Hardware-acceleration in CPUs (e.g., Arm MTE)

• Generic abstraction in WebAssembly: tagged pointers and segments
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ARM Memory Tagging Extension (MTE)

• 4 bit tag in unused address bits


• 16 byte granularity 

• Tag mismatch is caught by hardware
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ARM Memory Tagging Extension (MTE)

• 4 bit tag in unused address bits


• 16 byte granularity 

• Tag mismatch is caught by hardware
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ARM Memory Tagging Extension (MTE)

• 4 bit tag in unused address bits


• 16 byte granularity 

• Tag mismatch is caught by hardware
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ARM Memory Tagging Extension (MTE)

• Probabilistic Memory Safety


• 16 distinct tags → tag collisions

Tradeoffs
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Memory Segments
char *pointer = malloc(32);
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Memory Segments
char *pointer = malloc(32);

Memory Segments and Tagged Pointers
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Memory Segments
char *pointer = malloc(32); 
pointer[40];

Spatial Memory Safety Violations
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Memory Segments
char *pointer = malloc(32); 
free(pointer); 
pointer[24];

Temporal Memory Safety Violations
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Outline
• Background and Motivation


• Design 

‣ Internal Memory Safety


‣External Memory Safety (Sandboxing) 

‣ Combining Internal and External Memory Safety


• Implementation


• Evaluation

19



20

External Memory Safety

• Sandboxing using guard pages

• Allocate 2³² = 4 GiB of virtual memory per sandbox

• Only possible for 32-bit WebAssembly
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External Memory Safety

• Sandboxing using guard pages

• Allocate 2³² = 4 GiB of virtual memory per sandbox
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External Memory Safety

• Assign distinct tag for each sandbox

• Perform access relative to tagged base pointer
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External Memory Safety

• Assign distinct tag for each sandbox

• Perform access relative to tagged base pointer
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Outline
• Background and Motivation


• Design 

‣ Internal Memory Safety


‣ External Memory Safety (Sandboxing)


‣Combining Internal and External Memory Safety 

• Implementation


• Evaluation
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Combining Memory Safety and Sandboxing

• Split tag bits


‣ Up to four bits for sandboxing


‣ Remaining bits for memory safety within the sandbox


• On address translation, mask out runtime-reserved bits
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Combining Memory Safety and Sandboxing
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• Split tag bits


‣ Up to four bits for sandboxing


‣ Remaining bits for memory safety within the sandbox


• On address translation, mask out runtime-reserved bits



Outline
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• Design


• Implementation 

• Evaluation
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Implementation

26



Title

0

Modified
LLVM

Optimizer Sanitizer Codegen
wasmtime

MTE

Unmodified
source code

Modified
wasi-libc Extended

WASM
MTE-aware

runtime

Implementation

• LLVM 17


• Sanitizer passes
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• LLVM 17


• Sanitizer passes
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• wasi-libc


• 64-bit WASM


• Memory-safe allocator
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• Sanitizer passes
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• wasi-libc


• 64-bit WASM


• Memory-safe allocator

• wasmtime 16


• MTE-based memory safety


• MTE-based sandboxing

Compiler Toolchain Libc WASM Runtime
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Outline
• Background and Motivation


• Design


• Implementation


• Evaluation
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Runtime Overheads
PolyBench/C on Google Pixel 8
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Runtime Overheads
PolyBench/C on Google Pixel 8
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Minimal overheads for production deployments, 
speedups compared to 64-bit WASM!



Memory Overheads
PolyBench/C on Google Pixel 8
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Memory Overheads
PolyBench/C on Google Pixel 8
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Cage introduces minimal memory overheads (~5.3%)

Address sanitizer incurs much larger overheads (2-3x)
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Outlook
Growing Adoption of Memory Safety Extensions
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• CPU manufacturers are integrating memory safety extensions


‣ Arm MTE, Arm PAC, CHERI, Intel MPK, …
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Outlook
Growing Adoption of Memory Safety Extensions

• CPU manufacturers are integrating memory safety extensions


‣ Arm MTE, Arm PAC, CHERI, Intel MPK, …

• Widespread deployment in production environments


‣ MTE: Google Pixel, Ampere One

• Differing tradeoffs


‣ Capabilities vs. tagged memory, …
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Summary
• Memory Safety Extension for 64-bit WebAssembly


• Implementation using Arm MTE


• Overheads <5.6%, speedups when using MTE for sandboxing


• More details, such as formalization, evaluation, and pointer authentication in the paper!
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