
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Hardware-Assisted Memory Safety for
WebAssembly

Martin Fink

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Hardware-Assisted Memory Safety for
WebAssembly

Hardwaregestützte Speichersicherheit für
WebAssembly

Author: Martin Fink
Supervisor: Prof. Pramod Bhatotia
Advisor: Dimitrios Stavrakakis
Submission Date: 15.04.2024

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Munich, 15.04.2024 Martin Fink

Acknowledgments

First and foremost, I would like to thank my supervisor, Pramod Bhatotia. My
academic life would have been quite different without his guidance and support. Since
writing my Bachelor’s thesis in 2021, his chair has been a welcoming place, allowing
me to grow personally and as a researcher while opening many doors for the future.
I am also very grateful to my advisor, Dimitrios Stavrakakis, for answering my questions
about memory safety, giving me feedback on my work, and helping me debug weird
measurements. Thanks to Dennis Sprokholt for his feedback on my formalizations.

To my friends, who have been with me throughout my master’s thesis and beyond
in both academic and personal journeys: Thank you for making this time enjoyable.
While I cannot name everyone here, I want to extend special thanks to Andreas and
Christoph for their feedback on this thesis.

During my last semester break, I had the opportunity to do an internship at Huawei’s
Helsinki System Security Lab. I gained extensive knowledge in compilers, WebAssem-
bly, and security, greatly enhanced by the collaboration with my colleagues Antti, Janne,
Carlos, Rémi, Valentin, and my manager, Jan-Erik, despite our short time sharing the
office.

Lastly, I’d like to thank my family. Their support enabled me to study in Munich,
and I am forever thankful for the unconditional support they have provided me.

Abstract

In this thesis, we investigate the design and implementation of an extension to
WebAssembly (WASM) aiming to prevent the issue of memory safety vulnerabili-
ties, particularly in languages like C and C++ that compile to WASM. Despite WASM’s
sandboxing feature that isolates applications from other instances and the host, these
languages are still prone to memory safety bugs due to their lack of memory safety
provided by the type system or prevalent libraries. This thesis introduces a minimally
invasive extension to WASM designed to allow implementations to utilize diverse
hardware- or software-based memory safety mechanisms.

Our work includes a complete compiler toolchain for C/C++ in LLVM, hardening
programs, and providing spatial and temporal memory safety for heap and stack
allocations. We showcase an implementation utilizing ARM’s hardware-based Memory
Tagging Extension (MTE), that offers a high-performance, low-overhead solution for
spatial and temporal memory safety issues and is compatible with real-world perfor-
mance requirements.

We further explore the possibility of integrating MTE into WASM’s sandboxing
mechanism, improving the performance of programs relying on expensive software-
based bounds checks. The empirical evaluation on actual hardware platforms validates
our proposed system’s practicality and performance advantages.

Our work enhances WebAssembly with memory safety guarantees by introducing
a generic, minimally invasive extension with low overhead. It sets a groundwork
for further studies, suggesting directions for improving compatibility, optimizing
performance, and incorporating various memory safety mechanisms.

iv

Zusammenfassung

In dieser Arbeit untersuchen wir den Entwurf und die Implementierung einer Er-
weiterung von WebAssembly (WASM), die darauf abzielt, das Problem der Speicher-
sicherheitsschwachstellen zu verhindern, insbesondere in Sprachen wie C und C++,
die nach WASM kompiliert werden. Trotz der Sandboxing-Funktion von WASM, die
Anwendungen von anderen Instanzen und dem Host isoliert, sind diese Sprachen
immer noch anfällig für Speichersicherheitsfehler, da sie keine Speichersicherheit durch
das Typsystem oder gängige Bibliotheken bieten. In dieser Arbeit wird eine minimal
invasive Erweiterung von WASM vorgestellt, die es Implementierungen ermöglicht,
verschiedene hardware- oder softwarebasierte Speichersicherheitsmechanismen zu
nutzen.

Unsere Arbeit umfasst eine vollständige Compiler-Toolchain für C/C++ in LLVM,
die Härtung von Programmen und die Bereitstellung von räumlicher und zeitlicher
Speichersicherheit für Heap- und Stack-Allokationen. Wir stellen eine Implemen-
tierung vor, die ARMs hardwarebasiertes Memory Tagging Extension (MTE) verwendet,
das eine leistungsstarke Lösung mit geringem Aufwand für räumliche und zeitliche
Speichersicherheit bietet und mit realen Leistungsanforderungen kompatibel ist.

Außerdem untersuchen wir die Möglichkeit, MTE in den Sandboxing-Mechanismus
von WASM zu integrieren, um die Leistung von Programmen zu verbessern, die auf
teure softwarebasierte Bound Checks angewiesen sind. Die empirische Evaluierung auf
aktuellen Hardware-Plattformen bestätigt die Praktikabilität und die Leistungsvorteile
des von uns vorgeschlagenen Systems.

Unsere Arbeit erweitert WebAssembly um Garantien für Speichersicherheit, indem
wir eine generische, minimal invasive Erweiterung mit geringem Overhead einführen.
Sie bildet die Grundlage für weitere Studien und zeigt Wege zur Verbesserung der
Kompatibilität, zur Optimierung der Leistung und zur Integration verschiedener Spe-
ichersicherheitsmechanismen auf.

v

Contents

Acknowledgments iii

Abstract iv

Zusammenfassung v

1. Introduction 1

2. Background 3
2.1. WebAssembly . 3

2.1.1. WebAssembly Sandbox . 4
2.2. Memory Safety in the context of WebAssembly 4

2.2.1. Software-Based Mitigations . 5
2.3. Memory Safety Hardware Extensions . 6

2.3.1. Memory Tagging Extension (MTE) 7
2.3.2. Pointer Authentication (PAC) . 7

3. Motivation 9

4. Overview 11

5. Design 13
5.1. Threat Model . 13

5.1.1. Internal Memory Safety . 14
5.1.2. External Memory Safety . 14

5.2. Overview . 15
5.3. WebAssembly Extension . 15

5.3.1. Typing Rules . 17
5.3.2. Small-Step Reduction Rules . 18
5.3.3. Example . 19
5.3.4. Heap Safety . 21
5.3.5. Stack Safety . 22
5.3.6. Example . 22

vi

Contents

6. Implementation 24
6.1. LLVM . 24

6.1.1. LLVM IR . 24
6.1.2. LLVM Sanitizer Pass . 25
6.1.3. C extension . 25

6.2. WASI Libc Modifications . 26
6.3. Internal Memory Safety . 27

6.3.1. Tagging Memory . 28
6.3.2. Lowering WebAssembly (WASM) to machine code 28
6.3.3. Migration of the Linear Memory 29

6.4. External Memory Safety . 30

7. Evaluation 34
7.1. Experimental Setup . 34
7.2. Performance Overheads . 35
7.3. Memory Overheads . 36
7.4. Security Guarantees . 37

7.4.1. External Memory Safety . 37
7.4.2. Internal Memory Safety . 37

7.5. MTE Performance evaluation . 38
7.5.1. Instruction Latencies and Throughput 38
7.5.2. Tagging Primitives . 39
7.5.3. Synchronous and Asynchronous Mode 40
7.5.4. Migrating Tagged Memory . 40

8. Related Work 43
8.1. Memory Safety for WebAssembly . 43

8.1.1. MS-WASM . 43
8.1.2. RichWasm . 43
8.1.3. Pointer Authentication . 44

8.2. Memory Safety for C . 44
8.2.1. Memory-Safe C Language Dialects 44
8.2.2. Instrumentation-Based Memory Safety 44
8.2.3. Hardened Memory Allocators . 46

9. Conclusion 48
9.1. Future Work . 48

9.1.1. Additional Implementations . 48
9.1.2. Backward Compatibility . 49

vii

Contents

9.1.3. Combining Guard Pages and Memory Tagging Extension (MTE) 49
9.1.4. Pointer Authentication . 49

A. Artifacts 50
A.1. Building . 50

A.1.1. LLVM Toolchain . 50
A.1.2. Wasmtime . 51

A.2. Running Programs . 52
A.2.1. Compiling with Memory Safety 52
A.2.2. Running with Wasmtime . 52

Abbreviations 53

List of Figures 54

List of Tables 56

Bibliography 57

viii

1. Introduction

In recent years, WASM [10] has gained prominence [17] as a versatile compilation
target, serving not only to web-based applications but also to a broader spectrum of
use cases [37]. At its core, WASM is engineered as an efficient compilation target for
high-level, compiled languages such as C and C++. A fundamental aspect of its design
is its linear memory model, which allows these languages to efficiently compile to
WASM and WASM to efficiently compile to various architectures.

While WebAssembly provides a sandbox for untrusted code, which protects the
host and other guests from malicious or buggy code, it does not inherently prevent
memory safety issues within an application’s memory space. This limitation becomes
particularly evident when compiling languages like C or C++, where there are no
language-level guarantees to prevent these bugs.

Recent ISA extensions, such as ARM’s Pointer Authentication (PAC) [25] and Memory
Tagging Extension (MTE) [4], offer promising, high-performance solutions by providing
building blocks that incur low performance overhead. These hardware extensions are
designed to effectively address memory safety concerns.

We introduce an extension to WASM to address spatial and temporal memory safety
bugs with a prototype implementation utilizing MTE to efficiently implement the
safety guarantees. Our approach requires no modification to the source code, as we
provide a complete compiler toolchain and standard library that can be used to harden
unmodified C/C++ programs. The core contributions of this thesis are outlined as
follows:

WebAssembly Extension: A minimal and generic extension to the WebAssembly in-
struction set, allowing for protected memory regions without code changes.

Compiler Toolchain: A compiler toolchain that transparently transforms unmodified
programs to provide spatial and temporal memory safety for stack and heap
allocations.

Runtime: A WASM runtime with support for our WebAssembly extension and modi-
fied WASM compiler that utilizes ARM’s MTE.

Bounds Checks with MTE: An implementation to eliminate expensive software-based
bounds checks for 64-bit WASM programs.

1

1. Introduction

Evaluation on real hardware: Evaluation of our implementation on ARM hardware,
including performance and memory overheads as well as security guarantees,
and MTE as implemented in actual production hardware.

2

2. Background

In this chapter we discuss the necessary background on which our work builds upon.
We start by discussing WASM, memory safety in the context of WASM and ARM’s
PAC and MTE hardware extensions.

2.1. WebAssembly

WebAssembly [10], initially designed as an alternative, high-performance compilation
target to JavaScript, continues to be applied in various use cases. WASM was carefully
designed to allow compilation from high-performance languages traditionally compiled
to native machine code such as C, C++, or Rust and for compilation to different native
architectures.

Linear memory: WASM provides a linear memory that can be accessed by 32 or 64-bit
integers. This allows the compilers and languages to manage memory without
being forced into an unnatural idiom. Languages may ship their allocators,
garbage collectors, and layout data structures as efficiently as possible. This linear
memory can then be mapped directly to the virtual memory on the host.

Structured control flow: In WASM, unstructured control flow is not allowed by design.
WASM uses indices into type- and bounds-checked tables instead of raw function
pointers to make indirect function calls. For jumps, WASM provides a set of
well-defined control flow constructs. This reduces the attack surface of programs
compiled to WASM and aids code generation.

Stack machine: Since compilation targets offer different sets of registers, WASM does
not expose registers but operates on a typed stack instead. The stack can be
verified to be well-typed and compiled to diverse targets, such as register machines
or intermediate representations (IRs) in a single pass. No assumptions about
the number of guest registers are made, as these can vary between different
architectures and runtimes, as they might reserve some registers for their own
use (e.g., dedicating a register to hold some global state).

Limited datatypes: WASM defines four basic data types: 32 and 64-bit integer and
floating-point types. Different proposals add vector-, garbage-collected-, and

3

2. Background

reference types covering other use cases. There is no distinction between pointer-
and integer types. While this loses information present in the original program,
such as pointer provenance, and prevents some optimizations, this is not consid-
ered a problem. In most cases, WASM is generated by an optimizing compiler,
which has already performed optimizations relying on analyses such as alias
analysis. The design of WASM allows for an efficient compilation to this format,
which requires little optimization for the runtime compiling to native code.

Since its inception, WebAssembly has expanded its utility beyond the initial design
goal to various other domains, such as Function as a Service (FaaS) workloads, as an
alternative to Linux containers in Docker1, or as an isolation mechanism to enable
running untrusted code within native applications, among other uses.

2.1.1. WebAssembly Sandbox

When accessing memory, the WASM runtime must ensure the access is within the
bounds of the accessible linear memory. Then, the memory access is performed relative
to the memory’s base address. In current runtimes, this is usually achieved using two
major approaches.

Explicit bounds checks: An explicit bounds check is inserted before each memory
access, comparing the index with the bound of the current memory.

Guard pages: When running 32-bit WASM on 64-bit hosts, the runtime can leverage
the fact that virtual memory is abundant. For each linear memory, 232 bytes,
or 4 GiB of virtual memory are allocated, with the memory beyond the guard
being marked as inaccessible. The Memory Management Unit (MMU) will catch
accesses into these pages, and the operating system will deliver a segmentation
fault to the runtime, which will deliver a trap to the WASM program.

While the design of WebAssembly is designed to prevent malicious or erroneous
programs from compromising the host, buggy programs are still vulnerable to classical
memory safety errors discussed in section 2.2, such as buffer overflows.

2.2. Memory Safety in the context of WebAssembly

Programs written in languages like C or C++ are prone to memory safety bugs such
as memory accesses to (1) out-of-bounds or (2) dangling pointers, which are the
fundamental attack primitives enabling a whole class of attacks on a vulnerable or

1https://docs.docker.com/desktop/wasm/

4

https://docs.docker.com/desktop/wasm/

2. Background

buggy program [31]. Approaches to tackle these issues exist in several forms. Several
studies have shown that in large software projects, memory safety bugs make up
between 70 % and 75 % of all issues [15, 33, 34].

Lehmann et al. show that while some attack surfaces, such as those jumping to
arbitrary addresses or injecting shellcode, are mitigated by the design of WebAssembly,
buffer overflows or dangling pointer accesses are still possible [14]. Since WebAssembly
does not provide separate read-only memory regions, this opens up other surfaces,
allowing attackers to overwrite static data since compilers place them in the linear
memory with both read and write permissions. Crucially, neither fundamental attack
primitives (1) nor (2) are prevented by WebAssembly and can form the basis of an
exploit.

Programs may be written in managed languages that prevent these attacks by not
providing raw pointer accesses, such as Java, Python, JavaScript, or others. In these
languages, memory access is performed through bounds-checked arrays or managed
objects, such as classes. A garbage collector is responsible for cleaning up dangling
objects. This results in all references pointing to valid objects and all memory accesses
being bounds-checked. Other languages, such as Rust, take a different approach. In
Safe Rust, the type system forbids many invalid programs, e.g., programs containing
dangling references or raw pointer accesses. An escape hatch in the form of unsafe
exists, which allows dropping down to the level of C and directly manipulating raw
bytes. Both these approaches represent a fundamental tradeoff. Managed memory,
either in the form of reference counting or through a garbage collector, incurs an
overhead that may or may not be tolerated in some environments.

2.2.1. Software-Based Mitigations

To detect and mitigate memory safety bugs in languages that do not provide safety
guarantees at the language level, numerous approaches have been proposed [28, 29, 20,
30]. Checks can be inserted automatically at the compiler level, an approach chosen by
Address Sanitizer (ASan) and Hardware-Assisted Address Sanitizer (HWASan) [28, 30].
ASan incurs significant overhead, on average 73%, which is too high to be deployed in
production and is usually only tolerated while testing or fuzzing software. A sampling-
based version of ASan, GWP-Asan, is deployed in production in several large projects,
which results in a low overhead but does not provide complete protection for a single
process [29]. On a large scale, however, this approach allows for discovering real-world
bugs that may not be triggered by testing or fuzzing workloads.

5

2. Background

address

16 bit 48 bit

address

4 bit 48 bit

tag

MTE

No extension

address

8 bit 48 bit

signature signature

7 bit

PAC

address

4 bit 48 bit

sig sig

7 bit4 bit

tag

MTE + PAC

Figure 2.1.: Pointer layout on aarch64 in Linux with and without MTE and PAC enabled.

2.3. Memory Safety Hardware Extensions

As an alternative to flexible but slow software solutions to detect and prevent memory
safety issues, CPU designers have developed several hardware extensions designed
as an efficient foundation for memory safety. They provide security primitives that
compilers or programmers can use to provide full or partial memory safety to programs
while having a small enough additional memory footprint and performance overhead
to ship these solutions in production.

In figure 2.1, we show the layout of pointer bits used for address translation in
aarch64, the 64-bit variant of the ArmV8 instruction set [3], when running on Linux.
Only 48 out of the available 64 bits are used to address memory, while the remaining
bits are set to either 0 or 1 to differentiate between kernel and userspace addresses
but are unused for further address translation. Hardware extensions such as Top Byte
Ignore (TBI), MTE (section 2.3.1), or PAC (section 2.3.2) utilize those unused bits to
store metadata.

6

2. Background

2.3.1. Memory Tagging Extension (MTE)

ARMs MTE, available from ArmV8.5, provides a building block to prevent spatial and
temporal memory safety violations [4]. MTE implements a lock-and-key mechanism
where memory regions can be tagged with one of 16 distinct tags, and memory access
is only allowed using pointers with the corresponding keys.

The locking mechanism is implemented by storing a 4-bit tag in bits 56–59 of an
address (referred to as the logical tag). Accordingly, a tag is assigned to memory with
a granularity of 16 bytes (referred to as the allocation tag).

On Linux, each process can configure MTE by switching between the following
modes:

• Disabled: MTE is disabled, and no tag checks are performed.

• Synchronous: Tag mismatches cause a hardware fault on instruction retirement,
and a segmentation fault is delivered to the application. The faulting instruction
cannot read the affected memory location, or the update is not observable in the
case of writes.

• Asynchronous: Tag mismatches do not cause an immediate hardware fault.
Instructions may be able to read the memory location regardless of tag mismatches,
or the update may be observable in the case of writes. The fault is delivered after
the instruction has retired in the form of a CPU flag. The kernel will check this
flag at the next context switch and deliver a segmentation fault to the application.

Temporal and Spatial Memory Safety

MTE can provide spatial memory safety by assigning different tags to adjacent regions
and temporal memory safety by retagging freed memory. An example can be seen in
figure 2.2.

2.3.2. Pointer Authentication (PAC)

PAC [25] introduces primitives to prevent attackers from modifying pointers stored in
memory. The extension provides three instructions for signing pointers, authenticating,
or stripping the signature from pointers. PAC places the signature in the upper 16 bits
of pointers, with the exact layout dependent on the operating system, hardware, and
other factors, such as if MTE is enabled. The signature can be between 7 and 16 bits
long.

Signed pointers are invalid and cannot be used to address memory. They are created
using the pac* instructions. Before being used, the signature needs to be removed. This

7

2. Background

16 bytes

char *buffer = malloc(32);

buffer[33];
❌

free(buffer);

❌buffer[8];

Figure 2.2.: Example of a heap allocation protected by MTE. The pointer returned by
malloc and the allocation it points to are tagged with the same tag (),
while the surrounding memory is tagged with a different tag (). The
hardware checks for tag mismatches and thus prevents an out-of-bounds
error (logical_tag(buffer) = ̸= = allocation_tag(buffer[33])).
When freeing memory, the memory region is tagged with a new tag ().
This prevents use-after-free errors (logical_tag(buffer) = ̸= =

allocation_tag(buffer[8]))

happens either with the aut* instructions, which remove the signature if it is valid
or produce a pointer that will trap when used if the signature does not match the
address. The extension provides strip instructions to remove the signature regardless
of whether it is valid or not.

MTE and PAC can be combined at the cost of bits available for the PAC signature.
The exact layout of the PAC signature varies depending on the system. On Linux, bits
56–59 are used for MTE while bits 63–60 and 54–49 are used for PAC (see figure 2.1).
The remaining bit 55 differentiates between lower and upper (kernel- and userspace)
addresses.

8

3. Motivation

While WebAssembly provides strong safety and security guarantees, as discussed
in section 2.1, they mainly guarantee safety for the host, but not for the program
itself. In [14], Lehmann et al. show that while some attack surfaces, such as those
injecting shellcode or jumping to arbitrary addresses, are mitigated by the design of
WebAssembly, others, such as buffer overflows or write accesses to static, read-only
data is possible and being used to exploit programs running in the wild. Such cases
need to be mitigated at the language level by rewriting software in a safe language such
as Rust, manually inserting bounds checks, which is error-prone, or inserting checks
using the compiler and sanitizing the code.

Additionally, bugs like CVE-2023-4863 [7] continue to be exploited, showing that
memory safety is not a solved problem. While they do not escape the WebAssembly
sandbox, they pose a security risk to the programs themselves. In C, the use of unsafe
primitives or bugs, such as missing bounds checks, can be exploited by the attackers,
e.g., by overwriting a variable to elevate their privileges. In listing 1, the lack of bounds
checks allows an attacker controlling the variable input to write beyond the allocation
of buf and overwrite str.

1 void foo(char *input) {
2 char buf[32];
3 const char str = "Hello, World!";
4 strcpy(buf, input);
5 }

Listing 1: Vulnerable overflow.

WASM engines use various techniques to protect their sandboxes against malicious
code (see section 2.1.1). While virtual memory and guard pages are preferred for
performance, some situations (e.g., running 64-bit WASM) require software-based
bounds checks. This approach provides necessary security but comes at a performance
cost. In our measurements, switching to 64-bit WASM resulted in a roughly 6–8 %
overhead on out-of-order CPUs, which can speculate bounds checks, and 47 % overhead
on in-order CPUs (see detailed evaluation in section 7.2). The fallback to software-based
bounds checks is thus especially painful when running on low-power in-order cores

9

3. Motivation

using 64-bit WASM or in environments without an operating system, such as embedded
devices. The results on the out-of-order CPUs are similar to a previous evaluation done
by Szewczyk et al. [32].

10

4. Overview

In this thesis, we present a design for an extension that adds memory safety in
WASM built on top of the WASM 64-bit memory proposal1. The extension is created
to be minimally invasive and implementable using various techniques, including
hardware extensions such as MTE or PAC, capability-based architectures like Capability
Hardware Enhanced RISC Instructions (CHERI) [38], or software-based solutions
similar to ASan [28] or HWASan [30] (see chapter 5).

LLVM

C/C++ source
code

Clang

Optimizations

Stack sanitizer

Codegen

Hardened
WASM

wasmtime

Build Execution

WASM

Virtual Memory

MTE

Figure 4.1.: Overview of the prototype implemented in this thesis.

In figure 4.1, we present our prototype of this design. Unmodified C/C++ source code
is compiled using LLVM [13], where we implement a sanitizer that identifies and hard-
ens stack allocations, along with a modified standard library based on WebAssembly
System Interface (WASI) that protects heap allocations. LLVM then generates hardened

1https://github.com/WebAssembly/memory64

11

https://github.com/WebAssembly/memory64

4. Overview

WASM binaries that can be run in wasmtime2. We modify wasmtime to process our
WASM extension and implement it using MTE.

Additionally, we explore and implement a technique to efficiently sandbox WASM
programs using MTE, eliminating expensive software-based bounds checks required for
64-bit WASM programs. This technique can be combined with the MTE-based memory
safety implementation.

We analyze and benchmark various aspects of our implementation, including 32-bit
and 64-bit WASM, and the MTE implementation on real hardware (see chapter 7).

2https://wasmtime.dev/

12

https://wasmtime.dev/

5. Design

This chapter defines our threat model, WASM extension, and design to provide memory
safety for programs compiled to WASM.

5.1. Threat Model

In our threat model (figure 5.1), we differentiate between two aspects of memory
safety. In both models, we depict trusted components (marked with a) in green
and untrusted components (marked with a) in red. We additionally highlight the
component we are trying to harden (marked with a).

Internal Memory Safety: Ensures memory safety within the boundaries of a sandbox.
Our point of view is from within a WebAssembly instance, we trust the runtime
(and the host we are running on), but we do not trust external input (figure 5.1a).

External Memory Safety: Maintains the memory safety of the sandbox itself against
potentially malicious programs. Our point of view is from the runtime; we trust
the platform we are running on, but not the WebAssembly programs we are
executing (figure 5.1b).

WebAssembly Instance

Input

Runtime

(a) Internal memory safety.

Runtime

WebAssembly Instance

(b) External memory safety.

Figure 5.1.: Threat model for internal and external memory safety.

13

5. Design

5.1.1. Internal Memory Safety

For internal memory safety, the program within the sandbox and its runtime, including
its compiler, are considered trusted and assumed to be bug-free. Untrusted input (e.g.,
network data, file reads) originates from outside the sandbox and may be controlled
by an attacker. This model mirrors the threat environment of a standard non-WASM
program. Potential threats include:

• Buffer overflows: Attempts to access memory beyond allocated buffer boundaries.

• Use-after-free: Attempts to access deallocated memory.

As discussed in section 2.1, WebAssembly’s design inherently mitigates some threats
common in non-WASM environments, so we will not consider the following vectors:

• Return-oriented attacks: WASM’s structured control flow constructs prevent
arbitrary code execution through stack manipulation.

• Calling unknown function pointers: Function tables enforce a strict mechanism
for function calls, ensuring the integrity of call targets.

5.1.2. External Memory Safety

For external memory safety, we focus on the security of the sandbox. Threats originate
from running untrusted programs, which may be adversarial or buggy.

• Sandbox escapes: Attempts to break out of the sandbox’s restrictions and access
host resources.

• Side-channel attacks: Exploiting timing differences or resource usage patterns to
infer sensitive information.

We assume that the operating system and underlying target architecture are free of
bugs that malicious targets might exploit. This does not include assumptions about
potential spectre-like [12] attacks. The compiler needs to ensure that bounds checks are
guarded against side-channel attacks.

Additionally, we do not consider exploits of the program running in the sandbox as
vulnerabilities as long as they stay contained in the sandbox.

14

5. Design

LLVM

C/C++ source
code Intrinsics

Clang

Optimizations

Stack sanitizer

Codegen

WASM binary

WASI-libc

WASM runtime 1

WASM runtime 2

WASM runtime 2

Build Execution

Figure 5.2.: Overview of the compilation and execution workflow.

5.2. Overview

Figure 5.2 presents an overview of our prototype. At build time, the unmodified
C/C++ sources and a modified version of libc are compiled using LLVM [13]. After
optimizations, a stack sanitizer analyzes all functions and inserts instrumentation as
necessary. LLVM’s backend then generates WebAssembly binaries that can be deployed
and executed on various devices.

5.3. WebAssembly Extension

We designed an extension to WebAssembly that provides primitives to the modified
standard library and the stack sanitizer to guarantee memory safety for selected
allocations. Our extension builds on wasm64, the 64-bit variant of WebAssembly. We
choose wasm64, because it uses a 64-bit integer index type, with 48 of those bits used
to index memory. This allows us to allocate and store up to 16 bits of metadata per
pointer.

For our extension, we propose the notion of abstract segments and tagged pointers.
We introduce three new instructions that allow the creation of abstract segments and

15

5. Design

tagged pointers from raw pointers. These pointers carry provenance and can only access
the segment they were created with. Conversely, segments can only be accessed by the
tagged pointer created with them rather than with raw indices without provenance. We
introduce the following new instructions. Each instruction takes a constant unsigned
offset o, which allows compilers to fold in constant offsets when manipulating segments.

(new instructions) e ::= segment.new o | segment.set_tag o | segment.free o

In the following paragraph, we describe the new instructions in detail.

segment.new: Create a new, zeroed memory segment. This instruction takes two
arguments: a memory index and a size. The instruction generates a new tag,
assigns it to the piece of memory, and returns a tagged pointer that can be used
to access the segment.

segment.set_tag: This instruction takes a memory index, a length, and a tagged
pointer and applies the tag from the tagged pointer to the memory segment
located at the index with the passed length. This can be used to move ownership
from one segment to another or to merge segments.

segment.free: This instruction invalidates a segment by tagging the segment with
a new, implementation-defined tag. This instruction takes two arguments: a
memory index and a length. After this instruction, the tagged pointer being used
to access the segment is no longer valid, and accessing the segment through it
will result in a trap.

We also modify the semantics of existing load and store instructions. They still take
an integer as an index, but we introduce provenance to integers, which we can track
at runtime using the unused 16 upper bits in pointers. If a segment is accessed, the
runtime will check that the tagged pointer is allowed to access the segment, i.e., the
metadata matches the metadata created by the segment.new instruction. If this is not
the case, the runtime throws a trap.

At startup, the linear memory consists of a single segment that can be accessed using
untagged indices, allowing unmodified code to run under our new semantics without
modifications. This design choice also allows the gradual integration of safety primitives
into specific parts of WebAssembly applications where enhanced security is required.
For instance, it enables the introduction of a hardened malloc implementation, which
prevents spatial and temporal safety bugs for heap-allocated memory. Additionally, we
can analyze stack allocations to only harden those accessed using untrusted indices or
escape our analysis, e.g., by taking their address and passing it to another function.

16

5. Design

Cmemory = n
C ⊢ segment.new o : i64 i64→ i64

Cmemory = n
C ⊢ segment.set_tag o : i64 i64 i64→ ϵ

Cmemory = n
C ⊢ segment.free o : i64 i64→ ϵ

Figure 5.3.: Typing rules of the new instructions. For the definition of context C, see
the WASM paper [10].

Alignment All segments are aligned to 16 bytes, corresponding to the alignment of
MTE (see section 2.3.1). This is an implementation choice that may be changed once we
support additional implementations. More details can be found in section 9.1.

5.3.1. Typing Rules

In figure 5.3, we extend the typing rules of the WASM paper [10] in the notation of
Pierce [22]. The rules are of the form of C ⊢ e : tf . An instruction e is valid under the
context C, with Cmemory being used to access a context component, such as the memory.
The rule Cmemory = n ensures that the instruction can only be used when a memory is
declared. The type tf = t∗1 → t∗2 describes how the instruction manipulates the operand
stack. The instruction e expects an operand stack where it pops off t∗1 and pushes t∗2 .

17

5. Design

(store) s ::= {. . . , tag taginst∗}
taginst ::= b∗

s; (i64.const k); (t.load a o) ↪→i trap (5.1)

if stag(i, k + o, |t|) ̸= tag(k)

s; (i64.const k); (t.const c); (t.store a o) ↪→i trap (5.2)

if stag(i, k + o, |t|) ̸= tag(k)

s; (i64.const k); (i64.const l); (segment.new o) ↪→i s′; (i64.const t) (5.3)

if t = new_tag(k + o) ∧ s′ = s with stag(i, k + o, l) = t

s; (i64.const k); (i64.const t); (i64.const l); (segment.set_tag o) ↪→i s′ (5.4)

if s′ = s with stag(i, k + o, l) = t

s; (i64.const k); (i64.const l); (segment.free o) ↪→i s′ (5.5)

if t = free_tag(k + o) ∧ s′ = s with stag(i, k + o, l) = t

s; (i64.const k); (i64.const l); (segment.new o) ↪→i trap (5.6)
otherwise

s; (i64.const k); (i64.const t); (i64.const l); (segment.set_tag o) ↪→i trap (5.7)
otherwise

s; (i64.const k); (i64.const l); (segment.free o) ↪→i trap (5.8)
otherwise

Figure 5.4.: Small-step reduction rules of the new instructions and added rules for
load/stores. See the WASM paper [10] for the definitions of all rules and
auxiliary constructs.

5.3.2. Small-Step Reduction Rules

In figure 5.4, we extend the small-step reduction rules from the WASM paper [10] using
the notation established by Plotkin [23]. The lower portion of figure 5.4 presents new
tag-aware load/store rules that take precedence over the existing ones and new rules
for the introduced instructions.

To signal a trap, we reuse operators from the original WASM rules, including the

18

5. Design

trap operator. The state, s, is augmented with a storage mechanism that assigns a tag t,
to each 16-byte granule of memory. We use the following notation:

• t = stag(i, addr, len): Extracts the tag t for a memory region in instance i accessed
at address addr with length len, if the tag is the same for all bytes in the range
[addr, addr + len).

• s′ = s with tag(i, addr, len) = t: Updates the state with new tags for the memory
region at address addr with length len, if addr is aligned to 16 bytes, i.e. addr mod
16 = 0

• t = tag(pointer): Extracts the tag from a tagged pointer.

• t′ = new_tag(t): Creates a tagged pointer t′ from an untagged pointer t to be
used for a new segment. The tag is randomly chosen from a pool of tags.

• t′ = free_tag(t): Creates a tagged pointer t′ for the purpose of freeing a segment.
The tag is different from the tag stored in t.

Figure 5.4 highlights the added and modified components in the rules. The added load-
/store rules, specified in equations (5.1) and (5.2), enforce trapping on tag mismatches.
Similarly, when an access spans memory regions with different tags, these rules trap.
The rules for executing the new instructions, which modify the state by setting tags, are
presented in equations (5.3) to (5.8). Equations (5.3) to (5.5) represent the default case
where tags are assigned to aligned, in-bounds addresses, with equations (5.6) to (5.8)
representing the cases with unaligned or out-of-bounds accesses. Each reduction rule
is depicted with the operand stack’s top and state s on the left-hand side, representing
the pre-execution state, and the resulting stack and state after the execution of the
instruction on the right-hand side. For the rules with ↪→i, the i represents the instance
the instruction is executed in.

5.3.3. Example

We will demonstrate our WASM extension using the C snippet in listing 2, which
allocates 64 bytes on the stack.
This requires the compiler to instrument the stack allocation, create a new segment,
and free the segment before returning to the caller, i.e., giving ownership of the stack
slot back to the stack frame, as demonstrated in listing 3.

The compiler allocates the slot for buf on the stack, decrementing the global
$__stack_pointer acting as the stack pointer (lines 2 to 5). Then, a new segment
of size 64 is created, and the tagged pointer to it is stored in the local $buf (lines 8 to 10).

19

5. Design

1 void foo() {
2 char buf[64];
3 // ...
4 return;
5 }

Listing 2: Example of a C program allocating 64 bytes on the stack.

1 ;; Allocate space on the stack
2 global.get $__stack_pointer
3 i64.const 64
4 i64.sub
5 global.tee $__stack_pointer
6

7 ;; create a segment
8 i64.const 64
9 segment.new

10 local.set $buf
11

12 ;; ...
13

14 ;; retag with stack pointer tag
15 local.get $buf
16 global.get $__stack_pointer
17 i64.const 64
18 segment.set_tag
19

20 ;; reset stack pointer
21 global.get $__stack_pointer
22 i64.const 64
23 i64.sub
24 global.set $__stack_pointer

Listing 3: Generated WASM for code from listing 2.

20

5. Design

Before returning, the segment is retagged using the stack pointers tag, i.e., restoring
the previous tag and allowing access through the stack pointer (lines 15 to 18). Then,
the stack pointer is reset, freeing the stack frame (lines 21 to 24).

5.3.4. Heap Safety

The memory allocator needs to be aware of segments to provide heap safety. When
allocating memory, it aligns the requested size to 16 bytes, creates a segment, and
returns the corresponding tagged pointer. This prevents overflows from corrupting
allocator metadata or other memory segments. A modified allocator implementation
looks conceptually similar to the snippet in listing 4.

1 void *malloc(size_t length) {
2 void *chunk = /* perform allocation */;
3 return __builtin_wasm_segment_new(chunk, length);
4 }

Listing 4: Example of a malloc implementation utilizing the memory safety extension.

When compiled to WASM, we see just three new instructions added to the generated
code in listing 5 (lines 6 to 8). This proves that our extension is minimally invasive, as
the calling code does not need to be changed and will continue to work as-is. Similarly,
when freeing or reallocating memory, the allocator needs to ensure that the no longer
valid memory is retagged.

1 (func $malloc (param $length i64) (result i64) (local $chunk)
2 ;; perform allocation and place the result in $chunk
3 ;; ...
4

5 ;; create a segment
6 local.get $chunk
7 local.get $length
8 segment.new
9 ;; implicit return

10)

Listing 5: Generated WASM for code from listing 4.

21

5. Design

allocsToInstrument← ∅
for alloc ∈ allocations do

if escapes(alloc) then
allocsToInstrument← allocsToInstrument ∪ { alloc }

else if isUsedByUnsafeGEP(alloc) then
allocsToInstrument← allocsToInstrument ∪ { alloc }

end if
end for
for alloc ∈ allocsToInstrument do

insertTaggingCode(alloc)
insertUntaggingCode(alloc)

end for

Figure 5.5.: Algorithm to detect and harden safe and unsafe stack allocations.

5.3.5. Stack Safety

For stack safety, we create segments from stack slots when entering a function. Before
returning, all stack slots are untagged and reassigned to the stack frame. This allows
other functions to use the memory and prevents stack slots from being accessed after
returning from a function.

However, only some stack allocations need to be turned into segments. We can omit
allocations that do not escape or are only accessed using statically verifiable indices.
Creating segments for these would result in excessive runtime and memory overhead,
as each allocation would need to be aligned to 16 bytes and processed when entering
and returning from a function.

To address this, we design an algorithm (figure 5.5) that identifies safe memory
regions within the stack which do not require protection, thus avoiding creating
segments for the slots mentioned above. In figure 5.5, we present a simplified version of
our algorithm. We iterate over all stack allocations and check if the allocation (a) escapes
the function or (b) is indexed into using an unsafe getelementptr (GEP) instruction.

5.3.6. Example

We demonstrate the algorithm using the functions in listing 6. In the code example,
i (line 2) is safe, as its address is not used in a potentially unsafe address computation
and does not escape. The variables bytes_read and buf (lines 3 and 4) are deemed
unsafe as their address escapes (line 5). Additionally, buf is accessed using an untrusted
index (line 6).
In function bar, buf also needs to be instrumented as it escapes: the pointer to it

22

5. Design

1 char foo(int index) {
2 int i = 0; // safe
3 int bytes_read = 0; // unsafe
4 char buf[32]; // unsafe
5 read_input(buf, &bytes_read);
6 return buf[index];
7 }
8

9 char *bar() {
10 char buf[32]; // unsafe
11 return buf;
12 }

Listing 6: Example code for safe and unsafe stack slots.

is returned to the caller (line 11). Any attempt to dereference the value returned
by bar is undefined behavior and will be caught by our instrumentation, preventing
difficult-to-debug bugs or potential vulnerabilities.
This algorithm effectively balances the need for stack safety with performance and
memory efficiency constraints.

23

6. Implementation

We implement our prototype in the LLVM framework, wasi-libc, and the wasmtime
WebAssembly runtime. The following sections detail the specific modifications and
extensions to each component and some implementation choices and details to tackle
specific problems.

6.1. LLVM

We choose LLVM as our compiler, from C/C++ to WebAssembly. We modify the
existing WASM backend and add support for the extension described in section 5.3,
allowing LLVM to emit the new instructions.

6.1.1. LLVM IR

In the middle end, we introduce three new intrinsic functions that correspond and are
lowered to our WASM instructions by the backend.

ptr @llvm.wasm.segment.new(ptr, i64)

Takes an untagged pointer and a size, creates a new segment and returns the
tagged pointer to it.

void @llvm.wasm.segment.set_tag(ptr, ptr, i64)

Takes a pointer to a memory region we want to retag, a pointer containing the
new tag, and a size, and sets the tag for the memory segment.

void @llvm.wasm.segment.free(ptr, i64)

Takes a tagged pointer and a size and assigns a new tag to the region, ensuring
the tagged pointer cannot be used to access it anymore.

The clang front end or a sanitizer pass can insert calls to these intrinsic functions.
Listing 7 shows how we lower a function that allocates 32 bytes on the stack to LLVM
IR.

24

6. Implementation

1 define hidden signext void @foo(i32 %index) {
2 entry:
3 %arr = alloca [32 x i8], align 16
4 ; create a new segment
5 %1 = call ptr @llvm.wasm.segment.new(ptr %arr, i64 32)
6

7 ; do some work
8

9 ; return ownership of segment to stack
10 call void @llvm.wasm.segment.set.tag(ptr %1, ptr %arr, i64 32)
11 ret void
12 }

Listing 7: Code generated for a function that allocates 32 bytes on the stack.

Table 6.1.: Flags added to LLVM.
Flag Description Required Flags
-mmem-safety Enable the memory safety extension.
-fsanitize=wasm-memsafety Enable the stack sanitizer. -mmem-safety

6.1.2. LLVM Sanitizer Pass

In LLVM, we introduce a WASM-specific sanitizer pass that can be enabled via a
compiler flag (see table 6.1), designed to provide memory safety for stack allocations
when compiling to WebAssembly. This sanitizer analyzes functions for stack allocations,
applies padding, and inserts calls to the intrinsics described in section 6.1.1 to create
segments, as discussed in section 5.3.5. The pass runs after all optimizations, ensuring
we do not block passes that might remove stack allocations, such as mem2reg.

For each hardened allocation, we insert a call to the segment.new intrinsic after
the allocation and replace all uses of the pointer to the allocation with our tagged
pointer. Before returns or tail calls, we need to return ownership of the segment to
the stack frame, i.e. retagging using the stack pointers tag. This serves two purposes:
(1) subsequent code is able to access the memory through the stack pointer without a
tagged pointer, and (2) use-after-return errors are caught, as the tagged pointer is not
able to access the segment.

6.1.3. C extension

To create and manipulate segments manually, e.g., to build a segment-aware memory
allocator, we expose the memory safety features to C in the form of built-in functions

25

6. Implementation

Table 6.2.: Flags added to wasmtime.
Flag Description Required Flags
-C mte Enable the use of MTE.
-C mte-bounds-checks Use MTE for bounds checks. -C mte
-W mem-safety Enable the memory safety extension. -C mte -W memory64

that clang lowers to calls to the corresponding LLVM intrinsics.

void *__builtin_wasm_segment_new(void *, unsigned long);

void __builtin_wasm_segment_set_tag(void *, void *, unsigned long);

void __builtin_wasm_segment_free(void *, unsigned long);

The functions can be used as regular functions in C code, as illustrated in listing 8.

1 void *my_malloc(unsigned long size) {
2 void *memory = malloc(size);
3 return __builtin_wasm_segment_new(memory, size);
4 }

Listing 8: Example of how a built-in function can be called from C.

6.2. WASI Libc Modifications

To allow us to run applications relying on libc on wasm64, we port the WebAssembly
System Interface (WASI) and wasi-libc to wasm64. This work includes changing size
and pointer types from 32 to 64 bits.

We modify dlmalloc, the default allocator in wasi-libc, to provide memory safety for
heap allocations. We insert calls to the built-in functions exposed to C as necessary,
creating memory segments and returning tagged pointers to these segments. This
protects both allocator metadata and adjacent allocations from being accessed or
modified through heap overflows. When freeing or reallocating memory, segments are
freed, ensuring temporal safety.

26

6. Implementation

Hardware

Operating System

WebAssembly Runtime

Code

Virtual Memory

Runtime Address Space

Physical Memory Tag Memory

Allocator

Linear Memory

WebAssembly Instance

Figure 6.1.: The memory safety extension, as implemented in wasmtime using MTE.
Memory segments are tagged, with different colors representing different
tags. The processes virtual memory maps to physical memory and tag
memory, which stores the tags assigned to memory granules.

6.3. Internal Memory Safety

We implement our prototype in wasmtime1, a WebAssembly runtime mainly focusing
on speed and correctness, written in Rust. Wasmtime features an optimizing compiler,
cranelift2, and its own IR, namely Cranelift IR (CLIF).

In figure 6.1, we present an overview of our implementation of the memory safety
extension in wasmtime using MTE. We modify wasmtime and its supporting libraries
and extend it with support to parse and process the memory safety extension described
in section 5.3. We add support for MTE in the form of new instructions and lowering
rules to cranelift, allowing wasmtime to generate MTE instructions when compiling

1https://wasmtime.dev/
2https://cranelift.dev/

27

https://wasmtime.dev/
https://cranelift.dev/

6. Implementation

Table 6.3.: Default tag t for the linear memory.
Memory Safety MTE Sandboxing Default Tag

No No t ∈ { 0 }
No Yes t ∈ { 1, . . . , 15 }
Yes No t ∈ { 0 }
Yes Yes t ∈ { 1 }

for a target that supports them. We run in MTE synchronous mode to catch and stop
memory safety violations before their effects become observable to the violating or any
other process. These features can be enabled using the flags described in table 6.2.

The memory is tagged by default with one of the tags described in table 6.3, depend-
ing on the configuration. This tag is then stored in the heap base pointer of the WASM
instance, allowing memory accesses through the pointer.

For MTE, we store the logical tag in the upper, unused bits of the WASM index. This
index becomes a valid pointer once it is translated to an address by adding it to the
heap base address.

6.3.1. Tagging Memory

When setting an allocation tag, we have four choices:

1. stg: Setting the tag for a single tag granule,

2. st2g: Setting the tag for two tag granules,

3. stzg: Setting the tag for a single granule and zeroing the granule.

4. stgp: Setting the tag for a single granule and storing a pair of registers.

To ensure new segments are always zeroed, options (1) and (2) require an additional
memset. Our benchmarks for all four variants (see section 7.5) show stzg as the variant
with the lowest overhead while also clobbering one less register compared to stgp.

6.3.2. Lowering WASM to machine code

In the following paragraphs, we describe how we lower each of our instructions to an
MTE backend.

28

6. Implementation

segment.new : To create a new segment, we (1) check that the requested segment is
inside the linear memory of the guest, (2) generate a random logical tag and insert it
into the index, and (3) set the allocation tag for the segment. This involves generating a
loop that iterates over the size of the segment and setting the tag using stzg, which
also zeroes the memory.

segment.set_tag : To change ownership of a segment, we (1) check that the requested
segment is inside the linear memory of the guest and (2) set the new allocation tag for
the segment. Here, we do not need to create a new, random tag, as we have passed a
predefined tag.

segment.free : To invalidate a segment, we (1) check that the requested segment
is inside the linear memory of the guest and (2) set the default allocation tag for the
segment. The default tag depends on the configuration and can be taken from table 6.3.

We implement several optimizations to ensure our generated code runs efficiently.
When setting the allocation tag for a segment, we generate a loop iterating over the size
of the segment. If the size of the loop is known at compile time, we unroll the loop to
tag up to 160 bytes per iteration to avoid branch instructions. We choose this tradeoff
between code size and reducing the number of branch instructions executed.

6.3.3. Migration of the Linear Memory

When resizing linear memory, the runtime must relocate the existing contents and the
MTE tags if active. We have two primary migration strategies (see figure 6.2).

Temporarily disable MTE: Disable MTE globally, copy memory and tags, then re-
enable MTE. This compromises memory safety during the migration for other
threads in the same process relying on MTE and can thus only be used if only a
single WASM instance is running.

Copy data and tags: Load the memory tag for each 16 byte granule. Use the tag to
safely load and store data between memory regions, then set the tag for the new
granule.

We have measured the performance of both approaches in section 7.5.4. After taking
the performance difference into consideration, we chose the second approach, as the
approach to temporarily disable MTE relies on only a single thread in the process
requiring MTE and is only marginally faster on some CPUs and slower on others.

29

6. Implementation

1 disable_mte();
2 memcpy(from, to, len);
3 while from != end {
4 asm!(
5 "ldg {tag}, [{from}]",
6 "stg {tag}, [{to}], #16",
7 tag = out(reg),
8 from = in(reg) from,
9 to = inout(reg) to,

10);
11 from = from.add(16);
12 }
13 enable_mte();

(a) Code generated for the first migration
approach.

1 while from != end {
2 asm!(
3 "ldg {from}, [{from}]",
4 "ldg {to}, [{from}]",
5 "ldp {val1}, {val2}, [{from}]",
6 "stgp {val1}, {val2}, [{to}], #16",
7 from = in(reg) from,
8 to = inout(reg) to,
9 val1 = out(reg) _,

10 val2 = out(reg) _,
11);
12 from = from.add(16);
13 }

(b) Code generated for the second migra-
tion approach.

Figure 6.2.: Variants on how to migrate tagged memory.

6.4. External Memory Safety

In figure 6.3, we show our approach to utilize memory tagging to replace software-
based bounds checks while preserving external memory safety. The runtime assigns a
tag (see table 6.3) to each instance on module instantiation. This tag is stored in the
heap base address. Memory access translation then involves adding the accessed index
to the tagged heap base address. The memory outside the linear memory, i.e., memory
belonging to the runtime, is always tagged with the zero tag, ensuring MTE catches
accesses outside the sandbox with minimal modifications to the runtime.

However, we face a limitation in the number of sandboxes for this approach. Since
MTE only offers up to 16 distinct tags, we are limited to up to 15 different sandboxes
within one process, as we need to reserve one tag for the runtime.

We can combine this approach with the memory safety extension (see section 6.3)
by further restricting the number of sandboxes in one process and thus freeing up tag
bits for the memory safety extension. While it would be possible to assign up to three
MTE tag bits for sandboxing, we allocate three bits for the memory safety extension,
thus just allowing a single instance to run in the same process. We designate the lowest
tag bit to determine whether memory belongs to the runtime or the linear memory.
Since we reserved the zero tag for the runtime, we tag the linear memory with the tag 1.
The remaining three tag bits used for the memory safety features can be generated by
segment.new. This results in memory indices always having an even logical tag, with
the actual memory locations being assigned an odd allocation tag.

30

6. Implementation

Hardware

Operating System

WebAssembly Runtime

Linear Memory

Code

Virtual Memory

Runtime Address Space

Physical Memory Tag Memory

WASM Instance #1 #2 #n

Figure 6.3.: Bounds checks as implemented in wasmtime using MTE. Each instances
linear memory is assigned a unique tag, which re represent using different
colors. The virtual memory of the process maps to physical memory and
tag memory, which stores the tags assigned to memory granules.

This approach comes with the following challenges:

1. Adding a tagged user pointer to the heap base address should be performant and
result in the correct tag for the respective memory.

2. Untrusted WASM modules should not be able to forge tags that allow them to
access memory beyond their allocated sandbox.

As accesses are performed through integers, which can be arbitrarily changed by code,
adding an untrusted index to the heap base can be exploited to arbitrarily set the
resulting logical tag, potentially allowing code to escape the sandbox. To prevent this
issue, we mask the tag bits allocated for the runtime from the index before address
computation, as shown in figure 6.4. Figure 6.4a shows the masked bits when only MTE
bounds checking is enabled. In this case, all tag bits are assigned for bounds checks
and are masked out of the tag bits in the index. In figure 6.4b, we demonstrate what

31

6. Implementation

Table 6.4.: Tag mask for the index.
Memory Safety MTE Sandboxing Tag Mask

No No –
No Yes and 0xF0FF_FFFF_FFFF_FFFF
Yes No –
Yes Yes and 0xFEFF_FFFF_FFFF_FFFF

heap base

index

mask

add

tag effective address

untrusted

tag

(a) MTE bounds checks.
heap base

index

tag effective address

tag/untrusted

tag

mask

add

(b) MTE bounds checks with memory safety extension.

Figure 6.4.: Effective address calculation with MTE bounds checks.

happens when both MTE bounds checking and memory safety are enabled. Here, only
the lowest bit is assigned for bounds checks, while the remaining three are assigned
to the memory safety extension. In table 6.4, we present the mask used for each
configuration.

Excluding Tags from Random Tag Generation If we are running with MTE bounds
checks enabled, we need to ensure that certain tags cannot be generated by instructions
such as irg (insert random tag) or addg (add tag). Excluded tags can be either specified
as an exclude mask via an immediate parameter or an include mask via a prctl call.
We choose the latter option and set the include mask at startup time. In table 6.5, we
list the include masks and included tags for the instructions mentioned above. If the
memory safety extension is disabled, none of these instructions will be emitted, so we
do not need to exclude tags from being generated.

32

6. Implementation

Table 6.5.: Included tags for irg, addg instructions depending on configuration.
Memory Safety MTE Sandboxing Tag Include Mask Included Tags

No No – –
No Yes – –
Yes No 0xffff t ∈ { 1, 2, . . . , 15 }
Yes Yes 0x5555 t ∈ { 2, 4, . . . , 14 }

33

7. Evaluation

7.1. Experimental Setup

We conduct our benchmarks on a Google Pixel 8 equipped with a Google Tensor G3
chip, including 1×Cortex-X3 (2.91 GHz), 4×Cortex-A715 (2.37 GHz), and 4×Cortex-
A510 (1.7 GHz) cores, with MTE enabled. See table 7.1 for details on the benchmarked
cores. As of the time of writing, this is the sole commercially available device featuring
MTE. To mitigate thermal throttling, we attach a cooling fan to the device. Each
performance test is run on each CPU type available on the Tensor G3 chip by pinning it
to a single respective core. We run the benchmarks from the PolyBench/C 3.2 suite [24],
which includes 30 kernels from domains such as linear algebra, data mining, stencils,
and medley operations.

Table 7.1.: Comparison of the benchmarked cores.
Spec Cortex-X3 Cortex-A715 Cortex-A510
Cores 1 4 4
Pipeline out-of-order out-of-order in-order
Superscalar Yes Yes Yes
Architecture ArmV9.2 ArmV9.2 ArmV9.2
Maxmimum Frequency 2.91 GHz 2.37 GHz 1.7 GHz
L1 I-Cache/D-Cache 64 KiB 32/64 KiB 32/64 KiB
L2 Cache 512 KiB – 1024 KiB 128 KiB – 512 KiB 128 KiB – 512 KiB
L3 Cache 512 KiB – 16 MiB 512 KiB – 32 Mib 256 KiB – 16 Mib

Table 7.2.: Runtime benchmarking configurations.
Variant Pointer Width Memory Safety MTE Bounds Checks
wasm32 32-bit No No
wasm64 64-bit No No

mem-safety 64-bit Yes No
mte-bounds 64-bit No Yes
combined 64-bit Yes Yes

34

7. Evaluation

7.2. Performance Overheads

Cortex-X3 Cortex-A715 Cortex-A510
0%

20%

40%

60%

80%

100%

120%

R
u

n
ti

m
e

ov
er

h
ea

d

92.5

100.0

105.8

95.8 97.1 94.3
100.0

104.9

97.0 98.3

68.0

100.0101.0

69.9 72.1

Lower is better ↓

wasm32

wasm64

mem-safety

mte-bounds

combined

Figure 7.1.: PolyBench/C runtime overheads of different configurations described in
table 7.2, normalized to wasm64.

Figure 7.1 illustrates the mean runtime overheads for PolyBench/C benchmarks for
each CPU core available on the Tensor G3 chip. Compared to wasm64, our memory
safety extension has a mean overhead of 5.8 % and 4.9 % on the two out-of-order high-
performance cores. On the in-order Cortex-A510, we see an overhead of just 1.0 %.
Generally, we observe that the overhead of bounds checks through the switch from
wasm32 to wasm64 is lower on the out-of-order cores, as those can speculate on bounds
checks, while the in-order cores cannot. This also explains the low overhead of our
memory safety extension on the in-order cores, as we spend more time doing bounds
checks than on the out-of-order cores.

When we replace software-based bounds checks with MTE sandboxing, we see the
overhead largely disappearing. The remaining overhead can be explained through (1)
the natural overhead that enabling MTE synchronous mode poses (see section 7.5.3)

35

7. Evaluation

90.0%

95.0%

100.0%

105.0%

m
ax

rs
s

ov
er

h
ea

d

99.4 100.0
99.9 99.9 100.1

Lower is better ↓

wasm32

wasm64

mem-safety

mte-bounds

combined

Figure 7.2.: PolyBench/C memory overheads of different configurations described in
table 7.2, normalized to wasm64.

and (2) the fact that the linear memory needs to be tagged on program startup. This
overhead is especially noticeable for short-running modules that require large amounts
of linear memory.

Combining both MTE bounds and MTE memory safety, we see a slight increase from
just MTE bounds, which is smaller than the jump from wasm64 to memory safety. The
smaller increase is because we are not adding the MTE overhead, as MTE is already
enabled. The jump we see is the result of additional instructions tagging the segments.

We could decrease the overhead even further by switching to MTE async mode,
which is faster than sync mode (see section 7.5.3). However, this dramatically reduces
the security guarantees provided by MTE, as illegal writes and reads may become
observable. This disqualifies async MTE for bounds checking of WASM sandboxes, as
attackers may carefully craft malicious code to escape their sandbox. For the memory
safety extension, users may decide the additional risk is worth the reduced overhead,
e.g., when the memory safety extension is not used as a primary defense mechanism
but as a second layer or to find bugs in the wild.

7.3. Memory Overheads

Memory tagging incurs memory space overheads, particularly for small allocations
due to the 16-byte alignment required for MTE. Our measurements did not show
a significant difference in maximum resident set size (rss). This is because (1) safe
allocations do not incur space overhead, and (2) for large allocations, the 16-byte
alignment overhead is proportionally small. The main overhead in figure 7.2 is primarily
due to the switch to wasm64, as pointer sizes are doubled.

36

7. Evaluation

7.4. Security Guarantees

We evaluate the security guarantees from the perspective of internal and external
memory safety, as defined in section 5.1.

7.4.1. External Memory Safety

Running with MTE bounds checks, with MTE being configured to run in synchronous
mode, prevents programs from escaping their sandbox. We prevent programs from
forging tags by masking the respective tag bits before computing the effective address,
as described in section 6.4. Other defense mechanisms, such as structured control
flow, the typed stack, and function calls through typed and checked tables, remain
unchanged by our implementation. However, we limit the number of sandboxes in one
process to at most 15, which is required to assign a distinct tag to each sandbox.

Switching to async MTE mode is not feasible to retain external memory safety, as
memory accesses outside the sandbox may become observable to the WASM module
performing the illegal access and to other modules.

7.4.2. Internal Memory Safety

Our choice to utilize MTE results in low overhead, making it possible to deploy it in
production. However, our approach does not provide complete memory safety for
internal memory safety, as MTE provides a limited number of tags and should be
used as a secondary, not primary, defense mechanism to harden applications in the
wild. A tag collision means two memory regions could accidentally share the same tag,
potentially leading to a missed security violation. For example, if a buffer overflow
writes slightly beyond its intended bounds, but the adjacent memory has the same tag,
MTE cannot detect the issue.

We can calculate the probability for a tag collision for k = 2 random tags according to
figure 7.3, with n = 16 available tags for MTE bounds disabled (figure 7.3a) and n = 8
for bounds enabled (figure 7.3b), as we reserve one bit for the sandboxing mechanism.

However, we ensure that adjacent allocations are always tagged with distinct tags
and that memory is tagged with a new tag when it is freed, thus ensuring that spatial
errors up to 16 bytes and temporal errors until the subsequent allocation of a chunk of
memory are always caught.

37

7. Evaluation

Vnr =
n!

(n− k)!
= 240

Vt = nk = 256

P(c) = 1− Vnr

Vt
= 6.25%

(a) Probability of a tag collision with n =
16 and k = 2.

Vnr =
n!

(n− k)!
= 56

Vt = nk = 64

P(c) = 1− Vnr

Vt
= 12.5%

(b) Probability of a tag collision with n = 8
and k = 2.

Figure 7.3.: Probabilities of tag collisions for random tags.

7.5. MTE Performance evaluation

We evaluat the performance of different characteristics of MTE as implemented on
the Tensor G3 chip. All the programs used to measure results in this section are
implemented in Rust and available on GitHub1. As our benchmarking library, we use
criterion2. After each benchmarking run, we let the device cool down for 30 seconds to
prevent throttling. Additionally, we measure instruction throughput and latencies on
all CPU cores.

7.5.1. Instruction Latencies and Throughput

We evaluate instruction latencies and throughput in microbenchmarks executing
100,000,000 iterations of 100 instructions to minimize the effect of the looping code.
We use simpleperf3 to measure CPU cycles of our benchmarking program4. For each
instruction, we measure three variants: (1) the baseline, which includes the startup,
setup, and teardown of the benchmark, where no actual instructions are executed, (2)
the latency test, where we measure instructions with data dependencies between them,
and (3) the throughput test, where we measure instructions with no data dependencies.
We see the cycles and micro-ops per instruction in table 7.3.

We can make a few interesting observations:

• For the set-tag instructions, Cortex-X3 (out-of-order) has double the latency and
half the throughput compared to Cortex-A720 (out-of-order).

1https://github.com/martin-fink/mte-stg-bench
2https://github.com/bheisler/criterion.rs
3https://android.googlesource.com/platform/system/extras/+/master/simpleperf/doc/README.
md

4https://github.com/martin-fink/mte-inst-cycles

38

https://github.com/martin-fink/mte-stg-bench
https://github.com/bheisler/criterion.rs
https://android.googlesource.com/platform/system/extras/+/master/simpleperf/doc/README.md
https://android.googlesource.com/platform/system/extras/+/master/simpleperf/doc/README.md
https://github.com/martin-fink/mte-inst-cycles

7. Evaluation

• On Cortex-A510 (in-order), st2g has double the latency and half the throughput
of stg, while also being the only one with two micro-ops per instruction. This
leads us to believe that this instruction performs the same micro-op as stg, but
for two tag granules, while the operation is optimized on the other cores.

• Loading tags has a higher latency and lower or equal throughput than storing
tags, except for the Cortex-X3, where both types of instructions require one cycle.

• As expected, we observe that latency-bound instructions perform as many or
more cycles per instruction compared to throughput-bound instructions.

Table 7.3.: MTE cycles per instruction when latency- and throughput-bound (lower is
better), and micro-ops per instruction.

Variant
Cortex-X3 Cortex-A720 Cortex-A510

Lat Tp µops Lat Tp µops Lat Tp µops
irg 2 0.75 3 2 1 3 3 2 1
ldg 1 1 2 1.5 1 2 4 4 1
stg 1 1 2 0.5 0.5 2 1.5 1 1
st2g 1 1 2 0.5 0.5 2 3 2 2
stgp 1 1 2 0.5 0.5 2 1.5 1 1
stzg 1 1 2 0.5 0.5 2 1.5 1 1

7.5.2. Tagging Primitives

We evaluate the performance of the different types of instructions to set the tag for
a memory granule available in EL0 (user space) with the combinations described in
table 7.4. Here, instruction refers to the instruction used to set the tag, and granule size
refers to the amount of memory being tagged with a single instruction. The instructions
stzg and stgp implicitly set the granule to zero, while we have to use an explicit
memset for other instructions.

We run the benchmark on our testbed (see section 7.1) tagging a 128 MiB memory
region. Before each run, we request a fresh piece of memory with mmap and run the
specified configuration to prevent interference through already-filled caches.

We perform all runs on each type of CPU core on the Pixel 8 and illustrate the results
in figure 7.4. As expected, the instructions implicitly setting the memory to zero are
faster than tagging and then zeroing using an explicit memset. Both stzg and stgp
are only slightly slower than a raw memset, as their memory accesses do not need to
perform tag checks [3].

39

7. Evaluation

Table 7.4.: MTE benchmarking variants.
Variant Instruction Granule size Implicit zero memset
memset - - No Yes

stg stg 16 No No
st2g st2g 32 No No
stgp stgp 16 Yes No
stzg stzg 16 Yes No

stg+memset stg 16 No Yes
st2g+memset st2g 32 No Yes

Contrary to our expectations, st2g is only marginally faster than stg. This finding
contradicts the data presented in section 7.5.1, where operations are performed with
pre-filled data caches. In these benchmarks, we specifically measure wall clock time,
not processor cycles, to evaluate performance when tagging a large region of memory
immediately after requesting it from the operating system. This approach involves
requesting a fresh segment of memory before each execution. The Cortex-X3 achieves
shorter execution times than the Cortex-A720, despite us measuring lower instructions
executed per cycle, due to its higher clock speed.

7.5.3. Synchronous and Asynchronous Mode

We evaluate the performance of sequential memory accesses with MTE disabled and
enabled using synchronous mode and asynchronous mode on each type of CPU core
on the Pixel 8. This represents the raw overhead of enabling MTE without additional
instructions. In figure 7.5, we see that with synchronous mode, memset is 11.5%, 8.9%,
and 13.2% slower on the respective cores compared to the baseline with MTE disabled.
Asynchronous mode is closer to the baseline with an overhead of 0.9%, 3.7%, and 6.1%
respectively.

7.5.4. Migrating Tagged Memory

Migrating tagged memory involves the coordinated transfer of both data and its
associated tags. In figure 7.6, we analyze the performance of two migration strategies.

1. Baseline (memcpy with MTE): This baseline establishes the cost of a standard
memory copy operation with MTE enabled.

2. MTE Disable/Re-enable: Disabling MTE, copying data with memcpy, transferring
tags, and re-enabling MTE. This method temporarily compromises memory

40

7. Evaluation

Cortex-X3 Cortex-A715 Cortex-A510
0

100

200

300

R
u

n
ti

m
e

(m
s)

64.4 59.7 57.8 57.9 58.5
85.8 84.0 89.8 86.3 82.8 85.4 85.5

108 105

191 194 189
168 162

313 312

Lower is better ↓

memset

stg

st2g

stgp

stzg

stg+memset

st2g+memset

Figure 7.4.: Performance results of the benchmarking variants from table 7.4 on 128 MiB
of memory.

safety during the transfer if other threads rely on MTE being active during this
approach.

3. Iterative Copying: Copying tags and data in 16 byte granules allows copying tags
and data simultaneously while keeping MTE active for other threads.

Iterative copying has an overhead of 9.4 %, 12.0 %, and 5.2 % compared to the baseline
of copying just data on the Cortex-X3 (out-of-order), Cortex-A720 (out-of-order), and
Cortex-A510 (in-order), respectively. Disabling and re-enabling MTE incurs an overhead
of 5.25 %, 21.8 %, and 18.1 % respectively. This is in line with the findings in section 7.5.1,
which shows that the Cortex-X3 core requires more cycles per tagging instruction
compared to the Cortex-A720.

41

7. Evaluation

Cortex-X3 Cortex-A715 Cortex-A510
0

50

100

150

200

250
R

u
n
ti

m
e

(m
s)

71.4 72.1 79.6
97.1 100.7 105.8

190.7
202.4

215.9

Lower is better ↓

none async sync

Figure 7.5.: Runtime of memset on 128 MiB of memory using different MTE modes.

Cortex-X3 Cortex-A715 Cortex-A510
0

50

100

150

200

R
u

n
ti

m
e

(m
s)

49.7 52.3 54.3 57.8
70.4 64.8

137.9

162.8
145.0

Lower is better ↓

memcpy disable MTE copy

Figure 7.6.: Runtime comparison of strategies for moving 128 MiB of memory and tags
between regions.

42

8. Related Work

This chapter reviews existing efforts in ensuring memory safety, focusing on WASM and
C/C++ compiled directly to machine code. We explore notable projects in these areas,
comparing their approaches with our research to highlight our distinct contributions.

8.1. Memory Safety for WebAssembly

This thesis builds upon existing efforts in the field of memory safety for WASM. Here,
we examine notable projects aiming to achieve similar goals and highlight the distinct
contributions of our research.

8.1.1. MS-WASM

A significant project in this domain is MS-WASM, a memory safety extension for
WASM introduced by Disselkoen et al. and further developed by Michael et al. [8,
16]. MS-WASM introduces a new segment memory distinct from the linear memory,
preventing accesses through arbitrary offsets. The segment memory relies on access
through unforgeable handles, akin to CHERI pointers [38].

Key Differences This thesis adopts a different approach by enabling a gradual migra-
tion of memory segments into the linear memory. This preserves compatibility with
unmodified code, as only the allocation of memory regions has to be changed. Memory
accesses are still performed through integers, not pointers. We do not implement
intra-object memory safety to enable an implementation with MTE. While MS-WASM
proposes a technique to implement intra-object safety with a tagged-memory approach
(shading), this is not supported by MTE. We, thus, choose this tradeoff, because uti-
lizing MTE allows our implementation to run with significantly lower overhead on
devices equipped with this hardware feature.

8.1.2. RichWasm

RichWasm is a richly typed intermediate language for safe memory interactions be-
tween languages with varying memory management models [21]. It allows for static

43

8. Related Work

detection of memory safety violations and is especially beneficial for mixed-language
interoperability.

RichWasm is intended as a compilation target for safe languages like Rust or OCaml,
which have strong memory safety guarantees encoded in their type systems. Languages
like C, which lack information for static type safety analysis, are not directly supported
by RichWasm’s type-driven safety model.

8.1.3. Pointer Authentication

Rehde [26] has worked on implementing pointer authentication primitives. In their
work, they add pointer authentication primitives for data pointers backed by ARM’s
PAC to the memory safety extension described in this thesis. This complements our
work by providing additional protection mechanisms against pointer corruption.

8.2. Memory Safety for C

Various projects exist that work on providing memory safety for C. In this section,
we discuss several approaches to provide memory safety for C outside the context of
WASM, such as language extensions (section 8.2.1), instrumentation-based methods
(section 8.2.2), and hardened libraries (section 8.2.3).

8.2.1. Memory-Safe C Language Dialects

Several projects, such as CCured [19] or Cyclone [11], implement memory safety by
extending the C language. Their approach adds information about allocations but re-
quires manual changes to existing code. CHERI C/C++ [35] goes in a similar direction,
widening pointers to 128 bits. CHERI C/C++ can be compiled in one of two modes: (1)
purecap mode, where all pointers are capabilities and the compiler restricts them to
allocations, automatically providing memory safety, and (2) hybrid mode, where point-
ers remain 64 bits wide. Programmers can annotate pointers, transforming them into
capabilities, allowing to mix capability-aware and unmodified code. These approaches
break binary compatibility by storing metadata in a fat pointer representation.

8.2.2. Instrumentation-Based Memory Safety

The following projects automate memory safety without source code changes, employ-
ing various strategies to detect and prevent memory errors [28, 29, 20]. We can divide
these approaches into three major categories: (1) trip-wire-based, (2) object-based, and
(3) pointer-based.

44

8. Related Work

Trip-Wire-Based Approach

Trip-wire-based projects guard zones around allocations to catch memory safety errors.
Some projects that fall into this category are ASan [28], GWP-ASan [29], SafePM [5],
or Valgrind Memcheck [20]. In the case of ASan, 1/8 of the whole address space is
mapped as shadow memory, with one bit of shadow memory representing the state of
one byte of memory. When allocating memory, the allocation is padded, and guard
zones around the allocation are marked as inaccessible. When freeing memory, the
whole memory block is marked as inaccessible. The sanitizer inserts checks before each
memory access that check the address being accessed. ASan was built as a debugging
tool to be used when running tests or fuzzing programs, as it has an average overhead
of 73 %. SafePM [5] utilizes ASan to provide the same memory safety guarantees for
applications utilizing persistent memory.

GWP-ASan [29] is intended to be deployed in production. It adopts a probabilistic
approach to memory safety by sampling a subset of allocations and placing them in a
guarded memory region to detect spatial and temporal memory safety violations for
those allocations. Its low selection probability minimizes runtime overhead. The goal is
to uncover hard-to-reproduce memory bugs triggered by real-world user behavior not
covered by fuzzing or tests.

In contrast, Valgrind Memcheck utilizes dynamic binary instrumentation, which does
not require recompilation from source, but incurs much larger overheads.

Object-Based Approach

For object-based approaches, the metadata is associated with the allocated object. A
notable project in this area is Baggy Bounds Checking [2], which aligns and pads
allocations to powers of two to speed up bounds checks at runtime. Metadata about the
allocation can be efficiently retrieved thanks to the alignment of the allocation. Usually,
pointers are checked when doing pointer arithmetic, not when dereferencing pointers.
This poses a challenge for C, as the language permits out-of-bounds pointers as long
as they are not dereferenced. Intra-object safety is more challenging for object-based
approaches, as enforcing those additional constraints may require more sophisticated
data structures. For instance, Baggy Bounds Checking does not support intra-object
safety.

Pointer-Based Approach

In contrast, pointer-based approaches keep track of the pointer bounds. These can be
either stored in the pointer, as fat pointers [35] or in unused bits [30] or in an external
data structure [18]. One project in this domain is SoftBound [18]. It keeps track of

45

8. Related Work

each pointer’s upper and lower bounds, instrumenting memory accesses to check if the
pointer is within its bounds. This allows the implementation of intra-object memory
safety, as multiple pointers with different bounds may point to overlapping regions.
Additionally, creating out-of-bounds pointers is not an issue, as pointer arithmetic
is not checked. SoftBound keeps track of pointers stored in memory in a separate
data structure, where bounds are looked up and stored when loading and storing
pointers from and to memory. Similarly, the bounds must be propagated as additional
arguments and return values when passing pointers to and from functions.

CHERI [38] implements a pointer-based approach with hardware support. It extends
pointers to 128 bits, including permission and compressed bounds. Pointer dereferences
are checked by hardware, promising much better performance than software-based
checks. Currently, hardware exists in the form of the ARM Morello board [36], a
limited-production development board shipped to selected academic and industry
partners.

Hybrid Approaches

We consider memory-tagging-based approaches as a hybrid of object- and pointer-
based approaches. HWASan [30] or MTE both associate metadata with the pointer in
its upper, unused bits and with objects by assigning tags to memory. In the case of
HWASan, only memory accesses are instrumented, while memory accesses are checked
by hardware with MTE. This allows out-of-bounds pointers to exist if they are not
dereferenced. However, intra-object safety is not possible to implement, similar to
object-based approaches. In the case of both HWASan and MTE, binary compatibility
is preserved, as the hardware ignores extra metadata in the upper bits of pointers, thus
allowing uninstrumented code to handle pointers with and without metadata.

8.2.3. Hardened Memory Allocators

A few memory allocators have implemented support for MTE. They provide proba-
bilistic memory safety against both spatial and temporal memory safety as long as no
tag collisions occur.

• Scudo Hardened Allocator (used in Android): A security-oriented allocator
providing defense mechanisms against heap-based vulnerabilities [27].

• Chrome’s PartitionAlloc: A partitioning allocator focusing on security and effi-
ciency for multithreaded environments [6].

• glibc’s Ptmalloc: The GNU C library’s standard memory allocator, with evolving
experimental support for MTE [9].

46

8. Related Work

The Cling memory allocator [1] uses a different approach to prevent use-after-free
exploits by placing heap metadata out-of-band and reusing memory only for objects of
the same type. It achieves this by analyzing the call stack to determine the type of data
being allocated, and it works as a drop-in replacement without any code changes.

47

9. Conclusion

In this thesis, we present three pieces of work: (1) a minimally-invasive and adaptable
WASM extension that provides memory safety primitives to compilers and program-
mers, (2) an implementation consisting of (2a) a compiler toolchain integrated into
LLVM, including a modified wasi-libc and an allocator to provide spatial and temporal
memory safety for the heap, an LLVM sanitizer pass to instrument stack allocations,
(2b) an implementation in wasmtime, compiling and running the WASM extension on
MTE hardware, and utilizing MTE as a replacement for software-based bounds checks,
and (3) an evaluation of our work and a performance analysis of MTE, performed on
real hardware.

9.1. Future Work

9.1.1. Additional Implementations

We implement our prototype based on MTE for our memory safety extension. However,
additional implementations exploring different extensions, such as ARM’s TBI, available
from ArmV8.0, would allow storing metadata in the top byte while performing access
checks in software, similar to HWASan [30]. Software-based implementations, while
slower, would allow deploying the memory safety extension to more devices without
support for MTE.

We are working on an implementation utilizing CHERI, with an in-progress im-
plementation for the ARM Morello development board [36]. The CHERI architecture
provides much more fine-grained checks and unlimited compartments. However, it
requires widening pointers to 128 bits and moving from a fixed 16 byte alignment
for segments to a dynamic alignment, depending on the segment size. Additionally,
revoking capabilities for temporal memory safety is more complicated than MTE [39],
where memory can be retagged. Exploring and comparing these tradeoffs will be part
of our future work.

48

9. Conclusion

9.1.2. Backward Compatibility

Currently, code compiled with the memory safety extension requires a modified
runtime aware of this extension. We are exploring techniques to embed metadata about
allocations in custom WASM segments that are ignored by runtimes but are used to
provide memory safety when running on a modified runtime.

9.1.3. Combining Guard Pages and MTE

Currently, we are limiting the number of sandboxes to 15, as we allocate the zero tag
for the runtime and one tag per instance. Future work might explore possibilities to
increase the number of sandboxes by combining MTE with guard pages.

9.1.4. Pointer Authentication

In a previous Bachelor’s thesis, Rehde explored the integration of pointer authentication
primitives for data pointers to the WASM extension, with an implementation using
ARM’s PAC extension [26]. While WASM lacks raw function pointers, table indices
remain vulnerable to overwriting and forgery. As we do not support intra-object safety,
some overflow exploits remain possible. These could, for instance, target an object’s
virtual function table to redirect control flow to a different function.

Adding support for data pointers to sign and authenticate these table indices would
provide another defense against such attacks.

49

A. Artifacts

The artifacts are available on GitHub. They consist of the following repositories:

• LLVM: https://github.com/TUM-DSE/llvm-memsafe-wasm

• wasmtime: https://github.com/TUM-DSE/wasmtime-mte

• wasm-tools: https://github.com/TUM-DSE/wasm-tools-mte

• wasi-sdk: https://github.com/martin-fink/wasi-sdk

• wasi-libc: https://github.com/martin-fink/wasi-libc

• PolyBench/C: https://github.com/martin-fink/polybench-c

A.1. Building

All the projects contain a flake.nix that can be used to start a development shell
containing all the dependencies. They need to be installed manually on systems
without Nix.

A.1.1. LLVM Toolchain

The following commands can be used to bootstrap the WASM compiler toolchain,
including the libc.

git clone --recurse-submodules https://github.com/martin-fink/wasi-sdk.git
cd wasi-sdk
make package
cd dist
tar -xzf wasi-sdk-20.38g2b3e8f68d320-linux.tar.gz
tar -xzf libclang_rt.builtins-wasm64-wasi-20.38g2b3e8f68d320.tar.gz
mv lib wasi-sdk-20.38g2b3e8f68d320/lib/clang/18/

50

https://github.com/TUM-DSE/llvm-memsafe-wasm
https://github.com/TUM-DSE/wasmtime-mte
https://github.com/TUM-DSE/wasm-tools-mte
https://github.com/martin-fink/wasi-sdk
https://github.com/martin-fink/wasi-libc
https://github.com/martin-fink/polybench-c

A. Artifacts

A.1.2. Wasmtime

We are building wasmtime for Android, as the Pixel 8 is the only device supporting
MTE at the time of writing. The same steps are also possible if you are building for
Linux. In any case, you need a C compiler and linker for the corresponding target.

git clone --recurse-submodules \
https://github.com/TUM-DSE/wasmtime-mte.git wasmtime

cd wasmtime

Building for Android

You need to install the Android NDK1 to compile wasmtime for Android. The resulting
binary will be placed in ./target/aarch64-linux-android/release/wasmtime.

rustup target add aarch64-linux-android
mkdir .cargo
echo << EOF
[env]
[target.aarch64-linux-android]
linker = "/path/to/android/aarch64-linux-android34-clang"
ar = "/path/to/android/llvm-ar"
rustflags = ["-C", "target-feature=+mte"]
EOF >> .cargo/config.toml
cargo build --release --target aarch64-linux-android

Building for Linux

You need a cross-compiler for aarch64 Linux. The resulting binary will be placed in
./target/aarch64-unknown-linux-gnu/release/wasmtime.

rustup target add aarch64-unknown-linux-gnu
mkdir .cargo
echo << EOF
[env]
CC_aarch64-unknown-linux-gnu = "aarch64-linux-gnu-gcc"
CC_aarch64-unknown-linux-musl = "aarch64-linux-gnu-gcc"

[target.aarch64-unknown-linux-gnu]

1https://developer.android.com/ndk

51

https://developer.android.com/ndk

A. Artifacts

linker = "aarch64-linux-gnu-gcc"
rustflags = ["-C", "target-feature=+mte"]

[target.aarch64-unknown-linux-musl]
linker = "aarch64-linux-gnu-gcc"
rustflags = ["-C", "target-feature=+mte"]
EOF >> .cargo/config.toml
cargo build --release --target aarch64-unknown-linux-gnu

A.2. Running Programs

A.2.1. Compiling with Memory Safety

LLVM supports the flags described in table 6.1.

WASI_SDK=wasi-sdk-20.38g2b3e8f68d320
"./$WASI_SDK/bin/clang" \
-mmem-safety \
-Os \
-fsanitize=wasm-memsafety \
--sysroot "$WASI_SDK/share/wasi-sysroot" \
main.c \
-o main.wasm

A.2.2. Running with Wasmtime

Copy the wasmtime binary built in appendix A.1.2 to an MTE-capable device, e.g.,
QEMU. Wasmtime supports the flags described in table 6.2.

./wasmtime run \
-W memory64 \
-W mem-safety \
-C mte-bounds-checks \
-C mte \
main.wasm

52

Abbreviations

ASan Address Sanitizer

CHERI Capability Hardware Enhanced RISC Instructions

CLIF Cranelift IR

GEP getelementptr

HWASan Hardware-Assisted Address Sanitizer

IR intermediate representation

ISA instruction set architecture

MMU Memory Management Unit

MTE Memory Tagging Extension

PAC Pointer Authentication

rss resident set size

TBI Top Byte Ignore

WASI WebAssembly System Interface

WASM WebAssembly

53

List of Figures

2.1. Pointer layout on aarch64 in Linux with and without MTE and PAC
enabled. 6

2.2. Example of a heap allocation protected by MTE. The pointer returned by
malloc and the allocation it points to are tagged with the same tag (),
while the surrounding memory is tagged with a different tag (). The
hardware checks for tag mismatches and thus prevents an out-of-bounds
error (logical_tag(buffer) = ̸= = allocation_tag(buffer[33])).
When freeing memory, the memory region is tagged with a new tag ().
This prevents use-after-free errors (logical_tag(buffer) = ̸= =

allocation_tag(buffer[8])) . 8

4.1. Overview of the prototype implemented in this thesis. 11

5.1. Threat model for internal and external memory safety. 13
5.2. Overview of the compilation and execution workflow. 15
5.3. Typing rules of the new instructions. For the definition of context C, see

the WASM paper [10]. 17
5.4. Small-step reduction rules of the new instructions and added rules for

load/stores. See the WASM paper [10] for the definitions of all rules and
auxiliary constructs. 18

5.5. Algorithm to detect and harden safe and unsafe stack allocations. . . . 22

6.1. The memory safety extension, as implemented in wasmtime using MTE.
Memory segments are tagged, with different colors representing different
tags. The processes virtual memory maps to physical memory and tag
memory, which stores the tags assigned to memory granules. 27

6.2. Variants on how to migrate tagged memory. 30
6.3. Bounds checks as implemented in wasmtime using MTE. Each instances

linear memory is assigned a unique tag, which re represent using differ-
ent colors. The virtual memory of the process maps to physical memory
and tag memory, which stores the tags assigned to memory granules. . 31

6.4. Effective address calculation with MTE bounds checks. 32

54

List of Figures

7.1. PolyBench/C runtime overheads of different configurations described in
table 7.2, normalized to wasm64. 35

7.2. PolyBench/C memory overheads of different configurations described
in table 7.2, normalized to wasm64. 36

7.3. Probabilities of tag collisions for random tags. 38
7.4. Performance results of the benchmarking variants from table 7.4 on

128 MiB of memory. 41
7.5. Runtime of memset on 128 MiB of memory using different MTE modes. 42
7.6. Runtime comparison of strategies for moving 128 MiB of memory and

tags between regions. 42

55

List of Tables

6.1. Flags added to LLVM. 25
6.2. Flags added to wasmtime. 26
6.3. Default tag t for the linear memory. 28
6.4. Tag mask for the index. 32
6.5. Included tags for irg, addg instructions depending on configuration. . . 33

7.1. Comparison of the benchmarked cores. 34
7.2. Runtime benchmarking configurations. 34
7.3. MTE cycles per instruction when latency- and throughput-bound (lower

is better), and micro-ops per instruction. 39
7.4. MTE benchmarking variants. 40

56

Bibliography

[1] P. Akritidis et al. “Cling: A memory allocator to mitigate dangling pointers.” In:
19th USENIX Security Symposium (USENIX Security 10). 2010.

[2] P. Akritidis, M. Costa, M. Castro, and S. Hand. “Baggy Bounds Checking: An
Efficient and Backwards-Compatible Defense against Out-of-Bounds Errors.” In:
USENIX Security Symposium. Vol. 10. 2009, p. 96.

[3] ARM Ltd. Arm Architecture Reference Manual for A-profile architecture. White Pa-
per. Accessed: 2024-03-21. url: https://developer.arm.com/documentation/
ddi0487/latest/.

[4] ARM Ltd. ArmV8.5-A Memory Tagging Extension. White Paper. Accessed: 2023-12-
14. 2019. url: https://developer.arm.com/documentation/102925/latest/.

[5] K. K. Bozdoğan, D. Stavrakakis, S. Issa, and P. Bhatotia. “SafePM: A sanitizer
for persistent memory.” In: Proceedings of the Seventeenth European Conference on
Computer Systems. 2022, pp. 506–524.

[6] Chromium PartitionAlloc. Accessed on March 28, 2024. url: https://chromium.
googlesource.com/chromium/src/+/master/base/allocator/partition_
allocator/.

[7] CVE-2023-4863. Available from NIST National Vulnerability Database, CVE-ID
CVE-2023-4863. 2023. url: https://nvd.nist.gov/vuln/detail/CVE-2023-4863
(visited on 04/19/2015).

[8] C. Disselkoen, J. Renner, C. Watt, T. Garfinkel, A. Levy, and D. Stefan. “Position
paper: Progressive memory safety for webassembly.” In: Proceedings of the 8th
International Workshop on Hardware and Architectural Support for Security and Privacy.
2019, pp. 1–8.

[9] glibc ptmalloc. Accessed on March 28, 2024. url: https://ftp.gnu.org/gnu/
glibc/.

[10] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman, L. Wag-
ner, A. Zakai, and J. Bastien. “Bringing the web up to speed with WebAssembly.”
In: Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation. 2017, pp. 185–200.

57

https://developer.arm.com/documentation/ddi0487/latest/
https://developer.arm.com/documentation/ddi0487/latest/
https://developer.arm.com/documentation/102925/latest/
https://chromium.googlesource.com/chromium/src/+/master/base/allocator/partition_allocator/
https://chromium.googlesource.com/chromium/src/+/master/base/allocator/partition_allocator/
https://chromium.googlesource.com/chromium/src/+/master/base/allocator/partition_allocator/
https://nvd.nist.gov/vuln/detail/CVE-2023-4863
https://ftp.gnu.org/gnu/glibc/
https://ftp.gnu.org/gnu/glibc/

Bibliography

[11] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and Y. Wang.
“Cyclone: a safe dialect of C.” In: USENIX Annual Technical Conference, General
Track. 2002, pp. 275–288.

[12] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, et al. “Spectre attacks: Exploiting speculative execution.”
In: Communications of the ACM 63.7 (2020), pp. 93–101.

[13] C. Lattner and V. Adve. “LLVM: A compilation framework for lifelong program
analysis & transformation.” In: International symposium on code generation and
optimization, 2004. CGO 2004. IEEE. 2004, pp. 75–86.

[14] D. Lehmann, J. Kinder, and M. Pradel. “Everything old is new again: Binary
security of WebAssembly.” In: 29th USENIX Security Symposium (USENIX Security
20). 2020, pp. 217–234.

[15] Memory Safety. Accessed on March 14, 2024. url: https://www.chromium.org/
Home/chromium-security/memory-safety/ (visited on 03/14/2024).

[16] A. E. Michael, A. Gollamudi, J. Bosamiya, E. Johnson, A. Denlinger, C. Disselkoen,
C. Watt, B. Parno, M. Patrignani, M. Vassena, et al. “Mswasm: Soundly enforcing
memory-safe execution of unsafe code.” In: Proceedings of the ACM on Programming
Languages 7.POPL (2023), pp. 425–454.

[17] M. Musch, C. Wressnegger, M. Johns, and K. Rieck. “New Kid on the Web: A
Study on the Prevalence of WebAssembly in the Wild.” In: Detection of Intrusions
and Malware, and Vulnerability Assessment: 16th International Conference, DIMVA
2019, Gothenburg, Sweden, June 19–20, 2019, Proceedings 16. Springer. 2019, pp. 23–
42.

[18] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. “SoftBound: Highly
compatible and complete spatial memory safety for C.” In: Proceedings of the 30th
ACM SIGPLAN Conference on Programming Language Design and Implementation.
2009, pp. 245–258.

[19] G. C. Necula, S. McPeak, and W. Weimer. “CCured: Type-safe retrofitting of
legacy code.” In: Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. 2002, pp. 128–139.

[20] N. Nethercote and J. Seward. “Valgrind: a framework for heavyweight dynamic
binary instrumentation.” In: ACM Sigplan notices 42.6 (2007), pp. 89–100.

[21] Z. Paraskevopoulou, M. Fitzgibbons, M. Thalakottur, N. Mushtak, J. S. Mazur,
and A. Ahmed. “RichWasm: Bringing Safe, Fine-Grained, Shared-Memory Inter-
operability Down to WebAssembly.” In: arXiv preprint arXiv:2401.08287 (2024).

[22] B. C. Pierce. Types and programming languages. MIT press, 2002.

58

https://www.chromium.org/Home/chromium-security/memory-safety/
https://www.chromium.org/Home/chromium-security/memory-safety/

Bibliography

[23] G. D. Plotkin. “A structural approach to operational semantics.” In: (1981).

[24] L.-N. Pouchet. Polybench: The polyhedral benchmark suite. Accessed: 2024-03-25. url:
https://web.cs.ucla.edu/~pouchet/software/polybench/.

[25] Qualcomm Technologies, Inc. Pointer Authentication on ArmV8.3: Design and Anal-
ysis of the New Software Security Instructions. White Paper. Accessed: 2023-12-14.
2017. url: https://www.qualcomm.com/content/dam/qcomm- martech/dm-
assets/documents/pointer-auth-v7.pdf.

[26] F. Rehde. “Hardware-Assisted Memory Safety for WebAssembly.” BA thesis.
Technical University of Munich, 2023.

[27] Scudo Hardened Allocator. Accessed on March 28, 2024. url: https://llvm.org/
docs/ScudoHardenedAllocator.html.

[28] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. “AddressSanitizer: A
fast address sanity checker.” In: 2012 USENIX annual technical conference (USENIX
ATC 12). 2012, pp. 309–318.

[29] K. Serebryany, C. Kennelly, M. Phillips, M. Denton, M. Elver, A. Potapenko, M.
Morehouse, V. Tsyrklevich, C. Holler, J. Lettner, et al. “GWP-ASan: Sampling-
Based Detection of Memory-Safety Bugs in Production.” In: arXiv preprint arXiv:2311.09394
(2023).

[30] K. Serebryany, E. Stepanov, A. Shlyapnikov, V. Tsyrklevich, and D. Vyukov.
“Memory Tagging and how it improves C/C++ memory safety.” In: arXiv preprint
arXiv:1802.09517 (2018).

[31] L. Szekeres, M. Payer, T. Wei, and D. Song. “Sok: Eternal war in memory.” In:
2013 IEEE Symposium on Security and Privacy. IEEE. 2013, pp. 48–62.

[32] R. Szewczyk, K. Stonehouse, A. Barbalace, and T. Spink. “Leaps and bounds:
Analyzing WebAssembly’s performance with a focus on bounds checking.” In:
2022 IEEE International Symposium on Workload Characterization (IISWC). IEEE.
2022, pp. 256–268.

[33] G. Thomas. A proactive approach to more secure code. Accessed on March 14, 2024.
url: https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-
more-secure-code/ (visited on 07/16/2019).

[34] J. Vander Stoep and C. Zhang. Queue the Hardening Enhancements. Accessed on
March 14, 2024. url: https://security.googleblog.com/2019/05/queue-
hardening-enhancements.html (visited on 05/09/2019).

[35] R. N. M. Watson, A. Richardson, B. Davis, J. Baldwin, D. Chisnall, J. Clarke, N.
Filardo, S. W. Moore, E. Napierala, P. Sewell, and P. G. Neumann. “CHERI C/C++
Programming Guide.” en. In: (June 2020).

59

https://web.cs.ucla.edu/~pouchet/software/polybench/
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf
https://llvm.org/docs/ScudoHardenedAllocator.html
https://llvm.org/docs/ScudoHardenedAllocator.html
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/
https://msrc.microsoft.com/blog/2019/07/a-proactive-approach-to-more-secure-code/
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html

Bibliography

[36] R. N. M. Watson, G. Barnes, J. Clarke, R. Grisenthwaite, P. Sewell, S. W. Moore,
and J. Woodruff. Arm Morello Programme: Architectural security goals and known
limitations. Tech. rep. UCAM-CL-TR-982. University of Cambridge, Computer
Laboratory, July 2023. doi: 10.48456/tr-982. url: https://www.cl.cam.ac.uk/
techreports/UCAM-CL-TR-982.pdf.

[37] WebAssembly Use Cases. Accessed on March 28, 2024. url: https://webassembly.
org/docs/use-cases/.

[38] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Anderson, B. Davis, B.
Laurie, P. G. Neumann, R. Norton, and M. Roe. “The CHERI capability model:
Revisiting RISC in an age of risk.” In: ACM SIGARCH Computer Architecture News
42.3 (2014), pp. 457–468.

[39] H. Xia, J. Woodruff, S. Ainsworth, N. W. Filardo, M. Roe, A. Richardson, P. Rugg,
P. G. Neumann, S. W. Moore, R. N. Watson, et al. “Cherivoke: Characterising
pointer revocation using cheri capabilities for temporal memory safety.” In: Pro-
ceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture.
2019, pp. 545–557.

60

https://doi.org/10.48456/tr-982
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-982.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-982.pdf
https://webassembly.org/docs/use-cases/
https://webassembly.org/docs/use-cases/

	Acknowledgments
	Abstract
	Zusammenfassung
	Contents
	Introduction
	Background
	WebAssembly
	WebAssembly Sandbox

	Memory Safety in the context of WebAssembly
	Software-Based Mitigations

	Memory Safety Hardware Extensions
	Memory Tagging Extension (MTE)
	Pointer Authentication (PAC)

	Motivation
	Overview
	Design
	Threat Model
	Internal Memory Safety
	External Memory Safety

	Overview
	WebAssembly Extension
	Typing Rules
	Small-Step Reduction Rules
	Example
	Heap Safety
	Stack Safety
	Example

	Implementation
	LLVM
	LLVM IR
	LLVM Sanitizer Pass
	C extension

	WASI Libc Modifications
	Internal Memory Safety
	Tagging Memory
	Lowering WASM to machine code
	Migration of the Linear Memory

	External Memory Safety

	Evaluation
	Experimental Setup
	Performance Overheads
	Memory Overheads
	Security Guarantees
	External Memory Safety
	Internal Memory Safety

	MTE Performance evaluation
	Instruction Latencies and Throughput
	Tagging Primitives
	Synchronous and Asynchronous Mode
	Migrating Tagged Memory

	Related Work
	Memory Safety for WebAssembly
	MS-WASM
	RichWasm
	Pointer Authentication

	Memory Safety for C
	Memory-Safe C Language Dialects
	Instrumentation-Based Memory Safety
	Hardened Memory Allocators

	Conclusion
	Future Work
	Additional Implementations
	Backward Compatibility
	Combining Guard Pages and MTE
	Pointer Authentication

	Artifacts
	Building
	LLVM Toolchain
	Wasmtime

	Running Programs
	Compiling with Memory Safety
	Running with Wasmtime

	Abbreviations
	List of Figures
	List of Tables
	Bibliography

