TUTl

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Bachelor’s Thesis in Informatics

Translating x86 Binaries to LLVM
Intermediate Representation

Martin Fink

0

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Bachelor’s Thesis in Informatics

Translating x86 Binaries to LLVM
Intermediate Representation

Ubersetzen von x86-Binirdateien in
LLVM-Zwischendarstellung

Author: Martin Fink
Supervisor: Prof. Dr. Pramod Bhatotia
Advisor: Dr. Rodrigo Rocha, Dr. Redha Gouicem

Submission Date: November 15, 2021

0

I confirm that this bachelor’s thesis is my own work and I have documented all sources
and material used.

Munich, November 15, 2021 Martin Fink

Acknowledgments

I would like to thank the following people for helping me with this thesis:
My supervisor Prof. Pramod Bhatotia as well as my advisors Dr. Rodrigo Rocha and Dr.
Redha Gouicem for the possibility to work on this interesting project and their support
and guidance throughout it. S. Bharadwaj Yadavalli and Aaron Smith for taking their
time to review my pull requests and contributions to MCTOLL. My friends Andreas,
David, and Simon, as well as my sister Lena for proof-reading my work.

Abstract

With new CPU architectures such as ARM or RISC-V gaining popularity, achieving
application support is a problem hindering their adaption. Existing applications need
to be adapted, compiled, and distributed for the new architecture, which is not always
possible. Static binary translation is a concept that can help port binaries to new
architectures without introducing significant runtime overhead. These translators act
similar to a compiler in the sense that they process and translate binaries ahead of time.
In this thesis, we try to improve and extend the capabilities of the existing binary lifter
MCTOLL. It gradually recovers abstraction levels from binaries and produces LLVM
bitcode, which can then be compiled to all architectures supported by LLVM.

To test our implementation, we compare native programs to their translated counter-
parts by measuring runtime performance and code size of the phoenix-2.0 benchmark.

The results show that static binary translators are able to generate very efficient code
with the help of optimizers such as LLVM. However, they do have some limitations
and cannot process binaries with certain properties, which limits their use cases.

v

Zusammenfassung

Mit dem zunehmenden Aufschwung von neuen Prozessorarchitekturen wie ARM oder
RISC-V stellt die mangelnde Kompatibilitdt bestehender Anwendungen mit diesen
Architekturen ein Problem dar. Programme miissen an die neue Architektur angepasst,
neu kompiliert und an die Benutzer verteilt werden, was nicht immer moglich ist. Statis-
che Ubersetzung von Binirdateien ist ein Ansatz, Programme auf neue Architekturen
zu portieren, ohne erheblich an Laufzeit einzubiifien. Diese Ubersetzer verhalten sich
dhnlich wie klassische Compiler indem sie Programme verarbeiten, bevor sie ausgefiihrt
werden. In dieser Arbeit versuchen wir die Fahigkeiten des bestehenden Ubsersetzers
MCTOLL zu verbessern und erweitern. MCTOLL versucht schrittweise Abstraktion-
sebenen des urspriinglichen Programmcodes zuriickzugewinnen und erzeugt LLVM
Bitcode, welcher von LLVM dann fiir alle unterstiitzten Zielplattformen kompiliert
werden kann.

Um die Ergebnisse unserer Arbeit zu testen, vergleichen wir native Programme
mit den {ibersetzten und portierten Gegenstiicken. Wir messen die Laufzeit und
Programmgrofse des phoenix-2.0 Benchmarks. Die Ergebnisse zeigen, dass statische
Binériibersetzer mit der Hilfe von Codeoptimierern wie LLVM in der Lage sind, sehr ef-
fizienten Code zu erzeugen. Es gibt jedoch Einschrankungen in der Anwendbarkeit, da
diese Typen von Bindriibersetzern nicht jede Art von Programm verarbeiten konnen.

Contents

Acknowledgments iii
Abstract iv
Zusammenfassung v
1 Introduction 1
1.1 Motivation e e 1

1.2 Binary Translation Approaches 2
121 Dynamic Binary Translation 2

1.2.2 Static Binary Translation 2

2 Background 3
21 Control Flow Graph, 3
2.1.1 Dominator Trees e 4

22 LLVM . . e e e e e e 4
221 LLVM Intermediate Representation 5

2.2.2 Intrinsic Functions 5

23 XB6_64 . . e 5
231 SSE e e 6

24 System-VABIL 6
241 System-V Calling Convention 7

242 ReturnRegisters 00 L. 9

243 Examples of System-V Calls 9

25 MCTOLL e e 9
2.5.1 Discovering Function Prototypes 11

2.5.2 Discovering Non-Terminator Instructions 14

2.5.3 Promoting Registers to Stack Slots 16

254 Peephole Optimizations 18

255 Limitations e 18

3 Related Work 19
3.1 Direct Translation 19

Vi

Contents

3.2 IR-Based Translation
3.3 Peephole-Based Translation
3.4 Translation of Floating-Point Instructions,

4 Contributions

41 Support for Floating-Point Arguments and Return Values
4.1.1 Function Prototype Discovery
412 Call-Argument Discovery
41.3 Handling of SSE Register Values
414 Stack Promotion of SSE Registers

4.2 List of other Contributions
42.1 SSE Floating-Point Arithmetic Instructions
42.2 SSE min/max Instructions
423 SSE Floating-Point Bitwise Instructions
424 SSE FP Comparison Operations
425 SSE Move Packed FP Instructions
426 SSE Conversion Instructions
427 SSE Integer Bitwise Operations
428 SSE movq/movd Instructions
429 BitTestInstructions
4210 Multiplication Instructions
4211 Vararg Argument Discovery
4212 VariousBug Fixes

5 Evaluation
51 Setup

5.1.1 Benchmarks

5.2 Results . ..

521 NativeBinary L
5.2.2 Raw Overhead Introduced by Translation.
523 Optimized Binary,
524 Optimized Binary with Peephole Pass
5.2.5 Cross-Architecture Translation
5.2.6 Same-Architecture Translation
527 BinarySize o

6 Conclusion
6.1 Future Work

List of Figures

21
21
21
22
24
25
25
25
26
27
27
29
30
30
31
31
32
32
35

37
37
38
38
38
38
39
39
39
42
42

46
46

47

vii

Contents

List of Tables

Bibliography

49

50

viii

1 Introduction

During this thesis we have worked on expanding the capabilities of the MCTOLL (see
Section 2.5) static binary translator, mainly on the x86 (see Section 2.3) frontend. In
Chapter 2 we will describe MCTOLL, in Chapter 3 similiar projects, their capabilities
and limitations. Chapter 4 describes our contributions to the project, in Chapter 5 we
will discuss the impact and performance of our implementation.

1.1 Motivation

Today’s CPU architecture is not a homogeneous field. While x86 still remains the most
common instruction set architecture (ISA) in use in desktop computers, laptops, and
servers, new architectures such as ARM and RISC-V are continuously being developed
and are gaining market share. ARM historically was mainly used in the mobile
computing world, seeing widespread adoption in smartphones and low-powered
devices such as Raspberry Pis. In recent years, manufacturers in the desktop and laptop
computing world have been shifting their focus, as ARM-based CPUs potentially offer
more performance using less power than comparable x86 chips from Intel or AMD.

The transistion from one architecture to another results in compatibility issues
with existing binaries where re-compilation is not possible. If the source code for an
application is available, the preferred solution is to compile it to the target architecture
directly, as this will produce the most efficient result, both in runtime and binary size.
If the source code is not available, or it has been developed with specific assumptions
about the processor architecture in mind, binary translation offers a possibility to port
legacy binaries to a new architecture.

Another potential use case we discovered during this project is re-optimization. This
poses the possibility to improve performance for legacy binaries by leveraging new
processor extensions and improved compiler passes or optimize binaries for different
goals. Legacy binaries might not make use of vector extensions on modern CPUs if the
program has been written and compiled before such extensions were widely available.

1 Introduction

1.2 Binary Translation Approaches

There are two possible approaches to binary translation, both of which we’ll discuss
below.

1.2.1 Dynamic Binary Translation

Dynamic binary translation is the approach which is widely used today when programs
compiled for a different ISA need to be run and which is used by projects such as
QEMU [Bel05] and Apple’s Rosetta 2. They usually work by translating code on
demand, often on a per-basic block basis. This method has the possibility to run a
wide range of programs. Issues like indirect jumps, that pose problems for static binary
translation, are solved at runtime. The downside which dynamic binary translation
suffers from is performance. Translation needs to be done at runtime and there is not
much possibility to optimize the translated code, as only the current basic block is
available.

1.2.2 Static Binary Translation

Static binary translation performs the translation ahead of time, raising and recompiling
programs before they are executed on the target machine. This has the advantage of
not needing to translate a program everytime it is run, increasing performance similar
to how compiled languages typically have a lower runtime overhead compared to
interpreted languages. Another benefit is that static binary translators raise whole
functions and reconstruct the program’s control flow graph, offering the possibility to
apply existing compiler optimizations. These optimizations typically get rid of unused
expressions generated while raising a CPU instruction (e.g. calculation of CPU flags
that will not be used), and apply optimizations that are only possible when the control
flow graph is available.

However, static binary translation is not able to raise indirect branches as the jump
targets are not known before running the program.

2 Background

In this chapter we will discuss the technical background required for the later sections.
We will describe the architecture of MCTOLL in Section 2.5 and its limitations in
Section 2.5.5.

2.1 Control Flow Graph

A control flow graph (CFG) [All70] is a graph representation of a program where the
nodes represent basic blocks, while edges represent jumps.

Basic Blocks A basic block is a segment of code without any jumps or jump targets
where jump targets start a block while jumps end a block. Figure 2.1 is an example
CFG with an entry node (1), an exit node (6) and a loop (nodes 2, 3, 4, 5).

O

19"

Figure 2.1: Example of a control flow graph

2 Background

2.1.1 Dominator Trees

In a CFG a node n dominates a node p if every path from the entry node to p must go
through n [Pro59].
Additionally, the following definitions hold:

* A node n strictly dominates a node p if n dominates p and n # p.

* A node n immediately dominates a node p if n strictly dominates p but there exists
no node 1’ that strictly dominates p.

¢ A dominator tree is a directed graph where the children of a node n are the nodes
that n immediately dominates.

Dominator trees can be derived from CFGs as shown by Lowry and Medlock in
[LM69].

OBONORO

Figure 2.2: Dominator tree from the CFG in Figure 2.1

2.2 LLVM

LLVM is a set of compiler and toolchain technologies, designed around an intermediate
representation (IR) [LLV]. LLVM was started as a research project at the University of
Illinois. The IR serves as a portable high-level assembly language, which can be targeted
by compiler frontends such as clangl, rustc?, swiftc®, and others. LLVM transforms and
optimizes the intermediate representation with a set of compiler passes before passing
it on to LLVM’s codegen, which compiles the IR to the target’s machine code [LA0O4].

Ihttps://clang.1lvm.org
2https://www.rust-lang.org
Shttps://swift.org

https://clang.llvm.org
https://www.rust-lang.org
https://swift.org

2 Background

clang LLVM.opt LLVM.codegen

]PlR]Ptarget (21)

Figure 2.3: Workflow of clang and LLVM

2.2.1 LLVM Intermediate Representation

LLVM IR is in single static assignment (SSA) form, used by many intermediate lan-
guages to simplify compiler optimizations. SSA is a property of a language which
requires that each variable is assigned exactly once and defined before it is used by
subsequent instructions. Constant propagation, dead code elimination, and register
allocation are some compiler optimizations that are enabled by the SSA form [RWZ88].

In LLVM IR, each expression needs to be type-annotated. LLVM natively supports
arbitrary-sized integers, pointers, tuples, single- and double-precision floating-point
numbers, and vectors. These type annotations allow LLVM to perform some optimiza-
tions that would not be possible with a traditional three-address code.

%0
Al

i32 5
add i32 %0, i32 2
Listing 2.1: Example of LLVM IR addding 5 + 2

2.2.2 Intrinsic Functions

Intrinsic functions (or built-in functions) are functions that are available for use by the
programmer but implemented in the compiler itself. Depending on the target, the
compiler may insert a series of instructions in place of the function call or call a function
in some library. This behaviour is opaque to the user.

In LLVM some essential operations such as addition with overflow or square roots are
implemented as intrinsic functions. On platforms such as x86, these are then compiled
to a single CPU instruction, while they might be implemented in software on other
platforms.

2.3 x86_64

x86_64 is an extension to x86 designed by AMD and used by the main desktop chip
manufacturers Intel and AMD. x86_64 is a complex instruction set computer (CISC)
architecture that builds on x86 in a backwards-compatible way, supporting all 32
bit instructions while adding an array of features. The most important ones are the

2 Background

expansion of general purpose registers to 64 bits (see Figure 2.11), the addition of new
general purpose registers and the possibility to address an extended 64 bit address
space.

64 60 56 52 48 44 40 36 32 28 24 20 16 12 8 4 0
| | | | | | | | | |

| | | |
b— a1 —%— AL —
RAX AX
EAX |
k—BE —%— BL —
RBX s —
EBX |
— cH —%— cL —)
RCX S —
ECX |
—
RDX [DH —p— DL
EDX |
- —
RBP L Bb _orC
EBP |
-
RST L ST o
ESI |
L —
RDI L D
EDI |
-
RSP L S
ESP |
L — R8B —)
R8 L R8W
R8D |
L R19B —
R19 L R19W
R19D |
Figure 2.4: x86_64 general purpose registers
2.3.1 SSE

Most modern CPUs feature some kind of single instruction multiple data (SIMD)
instructions and registers. The most widely used SIMD extension for x86 is SSE
(Streaming SIMD Extensions). Additionally, SSE is also utilized to perform floating-
point operations. It uses the independent XMM registers (see Figure 2.5).

2.4 System-V ABI

System-V is an application binary interface (ABI) containing specifications for calling
conventions, object file formats, executable file formats, dynamic linking semantics,

2 Background

512 480 448 416 384 352 320 288 256 224 192 160 128 96 64 32 0
| | | | | | | | | | | | | |
L
k XMMO
ZMMO YMMO
k XMM1

K
ZMM1 YMM1

L
K XMM2
ZMM2 YMM2

|<— XMM31

YMM31

ZMM31

Figure 2.5: Vector registers introduced by SIMD extensions

and more for the Intel i386 and x86_64 architectures [Lu+]. System-V is the default
ABI used by Unix-like operating systems such as Linux, BSD distributions, macOS?,
and others. In this thesis, we will focus on the x86_64 part of the specification with
programs running in 64 bit mode.

2.4.1 System-V Calling Convention

The System-V calling convention describes how applications should call functions.
This includes how parameters are passed, values are returned, which registers should
be callee- or caller-saved, the layout of stack frames, and more. System-V groups
parameters into different classes, depending on their type. We will only describe the
most important ones for this project:

Integer consists of integral types that fit into one of the general purpose registers. This
includes both pointers and integers.

SSE consists of types that fit into an SSE vector register. It includes floating-point values
(float and double in C) and 128 bit vectors (packed ints, packed floats, ...).
Parameter Registers

System-V allows for up to six Integer and eight SSE parameters to be passed via
registers, while additional ones will be spilled onto the stack. Table 2.1 lists all registers
for each parameter.

4While macOS binaries follow the System-V calling convention, the system does not use other System-V
features, such as the ELF format for executables, object code, and shared libraries. Instead, Apple’s
format is Mach-O [App].

2 Background

Register Allocation The registers in Table 2.1 get assigned from left to right according
to the following algorithm:

1. If the class is Integer, use the next available register of RDI, RSI, RDX, RCX, R8, R9.
2. If the class is SSE, use the next available register of XMMO-XMM7.

3. If there are more arguments than argument registers, push the remaining argu-
ments to the stack in reverse order.

Integer types # | SSE types

#|i64 132 il16 i8 1 XMMO
1| RDI EDI DI DIL||2 XMM1
2 | RSI ESI SI SIL||3 XMM2
3 | RDX EDX DX DL 4 XMM3
4 | RCX ECX CX CL 5 XMM4
5| R8 R8D R8W R8B || 6 XMM5
6| R9 ROD ROW R9B || 7 XMM6

8 XMM7

Table 2.1: System-V parameter registers

Vararg Functions

In C, a vararg function is a function with a variable amount of arguments. This is useful
for functions such as printf, where the user is able to format a string with a number
of parameters. The C specification does not provide any information about the number
of variable parameters passed to a function, which is why this needs to be handled
manually. printf does this by parsing the format string and determining the number
of arguments according to that (see Figure 2.6). This also means that passing less
parameters than required by the format string will introduce undefined behaviour into
the program. The standard also defines no way to declare types of passed arguments.
For printf, this is again done by parsing the format string and analyzing it.

int printf(char *format, ...);
printf(, 1, 2.5, 3.5);

Figure 2.6: Example of a vararg function

System-V requires a caller of a vararg function to specify the number of SSE registers
used in a hidden argument passed in AL. This is shown in Figure 2.9.

2 Background

2.4.2 Return Registers

While System-V supports up to two Integer and two SSE return values, we will focus
on the more common single return value of a function. RAX and its subregisters are
used as the return register for Integer types, while XMMO is used for SSE types.

Type Register
i8 AL
il6 AX
i32 EAX
i64 RAX

float | XMMO (lower 32 bits only)
double | XMMO (lower 64 bits only)
Vector XMMO

Table 2.2: System-V return registers

2.4.3 Examples of System-V Calls

Following are examples demonstrating how programs pass arguments using the System-
V calling convention. Figures 2.7 to 2.8 show function calls with both Integer and SSE
arguments, while Figure 2.9 shows a call to a vararg function.

Register Value
EDI 2
long long add(int a, long long b); RSI 5
add(2, 511); RAX Return value
(a) Function definition and call (b) Arguments and return
register used for the func-
tion call

Figure 2.7: Integer-only method

2.5 MCTOLL

MCTOLL is a static binary translator implemented as an LLVM tool. It leverages
existing LLVM infrastructure and acts as a binary lifter, raising machine code to a higher
abstraction level. Its role is similar to a compiler frontend, but instead of processing

2 Background

Register Value
EDI 1
double test(int float b RS1 2
e e 2 1o v
ou e C, ong ong N XMM1 3.0
test(1, 1.5f, 3.0, 211);
XMMO Return value

(a) Function definition and call
(b) Arguments and return

register used for the func-

tion call
Figure 2.8: Mixed arguments
Register Value
AL 2

RDI Pointer to string
int printf (t char *f t) oL '
1I1. -}t);:zn const char oimg ,13 é) XMMO 1.5
pran P T 2 XMM1 3.5

(a) Function definition and call EAX Return value

(b) Arguments and return
register used for the func-
tion call

Figure 2.9: Vararg arguments

10

2 Background

high-level source code, MCTOLL recovers abstraction from low-level machine code. By
producing LLVM bitcode, MCTOLL can use existing optimization passes executed by
the LLVM optimizer. This is demonstrated in Figure 2.10.

ELF file LLVM IR
3 —— MCTOLL —— [& —— LLVM optimizer
a.out/a.so .11 J
LLVM IR
Target executable LLVM codegen B
b 11

Figure 2.10: MCTOLL workflow

MCTOLL processes binaries on a function level. While this requires reconstructing
the complete CFG, which is more effort than just raising on a block- or instruction level,
the produced bitcode is much better suited for optimizations by LLVM.opt.

MCTOLL leverages data structures used in LLVM.codegen, gradually processing
them and raising their level of abstraction. First, the source binary is disassembled to
an array of MCInsts. The control flow graph is only constructed in the second step, after
raising MCInsts to MachineInstrs. LLVM bitcode is then generated in four CFG walks:

1. discover function prototype (cf. Section 2.5.1),
2. discover jump tables,

3. raise non-terminator instructions,

4. raise terminator instructions.

The emitted bitcode can be compiled by clang to the target architecture.
In the following sections, we will dive deeper into some aspects of MCTOLL's raising
process.

2.5.1 Discovering Function Prototypes

MCTOLL needs to discover function prototypes before raising instructions, as this pass
provides information about which argument registers hold argument values. Addition-
ally, subsequent passes need to know function prototypes when raising function calls
to construct the LLVM call instruction.

11

2 Background

The algorithm described in Section 2.5.1 always looks at super-registers. A super-
register is the full-sized register, which the subregister is a part of. In Figure 2.11 all
subregisters of RAX are visualized.

64 60 56 52 48 44 40 36 32 28 24 20 16 12 8 4 0
\ \ \ \ \ \ \ \ \ \ \ \

AH AL

AX

EAX

RAX

Figure 2.11: RAX with its subregisters

Terminology In the following sections we will use the following terminology:
Register definition A write to a register, for example: mov eax, 0 defines EAX

Register usage An explicit or implicit read from a register, for example: mov eax, edx
uses EDX

Instructions may define or use one or more registers implicitly. idiv edi has an
explicit register usage of EDI and an implicit usage of EAX, and is an implicit register
definition of EDX and EAX.

Parameter Discovery

To detect the parameters of a function, MCTOLL traverses the function’s basic blocks
via a depth-first search. Each register usage is then checked. If the register is one of the
argument registers defined in Table 2.1 and has not been defined in the current or in all
predecessor blocks, it is considered an argument. Since the CFG may contain loops,
MCTOLL uses LLVM’s LoopTraversal class, which traverses blocks that are part of
CFG loops twice, to make sure each block’s predecessor has been visited at least once.

For each basic block, MCTOLL creates a union of all registers defined in its predeces-
sor blocks. If two blocks define the same super- but a different subregister, MCTOLL
retains the greater one to ensure all incoming values fit the resulting type.

MCTOLL then begins checking the current basic block, iterating over all instructions,
and checking each operand.

12

2 Background

¢ If the operand is a register use, MCTOLL checks if a predecessor or a previous
instruction in the current block defined the super-register. If that is not the case,
the register should be considered as a potential argument register.

¢ If the operand is a register definition, MCTOLL saves it as defined in the current
block. In this case, successive instructions and blocks will not consider the register
as a potential argument register.

Once MCTOLL processed all basic blocks, it checks all potential argument registers.
If the register is a valid argument register, MCTOLL looks up the number and type of
the argument and inserts it into the function signature. If argument 7 is missing, but
argument n + 1 is defined, it is assumed that argument n was unused and optimized
away. The type of the argument is considered to be 164.

Type Discovery

Values passed in general purpose registers are of integer type, with the width of the
register as the width of the raised type (EDI — 132). This also means that MCTOLL
raises parameters that were initially pointers to 164°. See Figure 2.12.

void test(int, char, char *) { define dso_local void @test(
i32 %1, i8 %2, i64 %3) {

(a) Original code
(b) Raised code

Figure 2.12: Discovered arguments passed in general purpose registers

Return Type Discovery

To discover the return type of a function, MCTOLL looks at the return blocks and
checks if one of the two supported return registers RAX or XMMO has a reaching definition
in all of them. A block is considered a return block if it ends with a return instruction,
ignoring padding instructions. The algorithm to check if all return blocks have a
reaching definition of a return register is as follows: A working list of basic blocks is
initialized with the return blocks. For each block in the working list, its instructions are
iterated in reverse order and checked.

Sllvm-mctoll only supports raising 64 bit binaries.

13

2 Background

¢ If the instruction defines a return register, the return register is also defined for
the end of the block. Stop iterating over further instructions.

e If a call instruction is encountered, stop, as return registers are temporary and
not preserved across function calls.

e If all instructions have been processed but no return register is defined, add the
predecessors of the current block to the working list.

The return type of the function is set to that corresponding to the discovered return
register. For functions where no return register has been found, the type is set to void.
Should two return blocks return different-sized integers, the larger one is retained. This
behaviour can be seen in Figure 2.13. Since the only return block .exit does not define
the return register, we have to look at its predecessors .bb.1 and .bb.2. They define
different subregisters, EAX and RAX respectively. The return type is set to the larger 164
instead of 132.

test: define dso_local i64 @test(i32 %1) {
cmp edi, O ;
je .bb.2: }

.bb.1:
mov eax, O (b) Raised code with detected return type
jmp .exit

.bb.2:
mov rax, 1

.exit:
ret

(a) Original code

Figure 2.13: Return type detection example

2.5.2 Discovering Non-Terminator Instructions

During the second CFG walk, MCTOLL raises all non-terminator instructions. To keep
track of values stored in registers, a register to SSA map is constructed for each function.
This map is updated while raising basic blocks and keeps track of which LLVM value
is stored in which register. Figure 2.14 shows an example of how this map might look
while raising a program.

14

2 Background

RAX J 0 %hargl
RBX 1
RCX 2 —L %2 = add i64 %argl, 1

i64 0

Figure 2.14: Register-SSA map keeping track of register values in different blocks

Each MachineInstr can be translated to zero, one, or more LLVM instructions.
Register moves are not translated to an LLVM instruction, only the register-SSA map is
updated. Instructions such as add operations, where a simple LLVM counterpart exists,
translate directly to a single LLVM instruction. In addition, instructions that implicitly
set processor status flags will result in more than one instruction in the raised bitcode.
The value of the processor flags is also stored in the register-SSA map, where successive
instructions will be able to access them. This can be seen in Figure 2.15, with the initial
and updated register-SSA map shown in Figure 2.16. If successive instructions do not
access generated instructions, LLVM will remove them in its optimization phase when
generating code.

add edi, 1

(a) Original code

%EDI = add i32 Yargl, 1
%0 = call { i32, il } @llvm.uadd.with.overflow.i32(i32 %argl, i32 1)
%CF = extractvalue { 132, il } %0, 1

(b) Raised code

Figure 2.15: Raised add operation

Terminating instructions such as return or jump instructions are not yet raised in this
pass, MCTOLL is gathering information about them to raise them in a subsequent pass.

15

2 Background

RDI 0 hargl RDI 0 %EDI
CF 0 [CF 0 #CF
(a) SSA map before raising add instruction (b) SSA map with new value for RDI

Figure 2.16: Register-SSA map before and after raising the add operation in Figure 2.15

Raising Function Calls

If an encountered instruction is a function call, MCTOLL first needs to look up the
function prototype. Function prototypes for external functions need to be passed in the
form of header files. For every argument, MCTOLL looks up the reaching value for the
appropriate argument register. If there is no reaching value, it assumes the argument
has been optimized and passes a constant 64 bit integer of zero.

MCTOLL can then construct the LLVM call instruction with the discovered arguments.
If the function is not a void function, MCTOLL updates the register-SSA map for the
return register and sets its value to that of the function call.

Vararg Calls If the called function is a vararg function, MCTOLL needs to check for
additional arguments after the normal arguments. It does that by iterating over the
remaining argument registers and checking for a reaching value for that register. If a
reaching value exists, that value is added to the list of arguments. Otherwise, the code
does not look for further arguments and constructs the function call.

2.5.3 Promoting Registers to Stack Slots

In Figure 2.17 we see an example where multiple values reach a block. In LLVM, there
exists a phi instruction, that selects a value depending on which predecessor block was
executed before entering the current block. MCTOLL cannot use this instruction, as not
all predecessor are necessarily raised when processing the current block. As a solution,
MCTOLL allocates a stack slot, where the value is stored in all predecessor blocks. This
slot is read in the block where the value is needed. The code in Figure 2.17 is raised to
the bitcode shown in Figure 2.18. If a predecessor block is not raised at the time when
the stack slot for a register is created, it is marked as incomplete and processed after all
blocks have been translated.

16

2 Background

7F = 0 .entry: ZF =1
jz .bb.2
.bb.1: .bb.2:
mov eax, 1 mov eax, 2
jmp .bb.3 jmp .bb.3
. .bb.3:)

mov edi, eax

Figure 2.17: Control flow graph with a register being defined in multiple predecessors.

.entry:
EAX-STK-LOC = alloca i32, align 4

br %CF, .bb.1, .bb.2
.bb.1:
store i32 1, 132 %EAX-STK-LOC, align 4
br .bb.3
.bb.2:
store i32 2, i32x Y%EAX-STK-LOC, align 4
br .bb.3
.bb.3:
%EDI = load 132, i32x %EAX-STK-LOC, align 4

Figure 2.18: Stack promotion of EAX

17

2 Background

While code with these stack slots is potentially more inefficient, as it will access
memory, while phi instructions may be compiled to use registers, LLVM.opt is able to
convert these stack accesses to phi nodes, resolving this issue.

2.5.4 Peephole Optimizations

Peephole optimizations are compiler optimizations that operate on a small set of instruc-
tions, analyzing them, and potentially replacing them with a new set of instructions
offering better performance [McK65]. In MCTOLL, peephole optimizations are used to
replace certain instruction patterns to make sure the LLVM optimizer is able to optimize
them. One example are memory accesses with an offset as shown in Figure 2.19.

%1 = ptrtoint i8* %0 to i64 %1 = getelementptr i8, i8+* %0, i64 16
%2 = add i64 %0, 16 %2 = bitcast i8% %0 to i32x
%3 = inttoptr i64 %0 to i32x

(b) Optimized code
(a) Original code

Figure 2.19: Example for code optimized by the MCTOLL peephole pass

2.5.5 Limitations

While MCTOLL allows raising a large set of programs, there are some limitations on
what it can do. Indirect jumps are not supported, as jump targets cannot be detected
ahead of time.

Before our contributions to the project, MCTOLL was not able to raise programs from
benchmarks such as phoenix-2.0 [Ran+07] and others, as many integer instructions were
not supported. Additionally, almost no SSE instructions were implemented, meaning
programs using floating-point arithmetic could not be raised. In Chapter 4 we will
discuss our contributions to MCTOLL, the instructions that were implemented and
bugs that we fixed.

18

3 Related Work

3.1 Direct Translation

With direct translation, a one-to-one mapping from the source to the target instructions
is created. This is the approach used by projects such as Aries [ZT00] (HP-PA to 1A64),
Rosetta 1 (PowerPC to x86/1A32) and Rosetta 2 (x86_64 to ARM), IA-32EL [Bar+03]
(x86/1A32 to IA64), and others [Che+08]. These projects were developed to aid the
adoption of new CPU architectures by allowing legacy binaries to run on new machines
without barriers or having to wait for developers to release an updated version of their
programs. Rosetta 2 also implements parts of the translator in hardware, significantly
speeding up the translated binary.

3.2 IR-Based Translation

A more flexible approach is achieved by translating the source into an intermediate lan-
guage before it is compiled to the target architecture. Projects such as MCTOLL [YS19]
and LLBT [She+12] use LLVM IR as their intermediate language, while others like the
UBQT framework [Cif+02] develop their own intermediate representation.

The advantage of IR-based translation is that adding support for an additional source
or target architecture takes less effort than for the direct approach, as the front- and
backend are decoupled. Widely used IR’s such as LLVM IR already come with a
wide range of supported target architectures as well as an optimizer that is able to
significantly improve the runtime performance of the generated code.

3.3 Peephole-Based Translation

Projects such as the tool developed by Bansal and Aiken implement a static binary
translation approach without having to manually implement the mapping for every
instruction. It uses a peephole superoptimizer to find mappings from the source to
the target architecture. This superoptimizer approach works by extracting a list of
instruction sequences from a training set, creating a possible list of replacements for
them, and checking which of these replacements is equivalent to the source sequence. If

19

3 Related Work

the replacement sequence is equivalent to the source sequence, it is saved as a mapping.
From this, a lookup table with replacement sequences from the source to the target
architecture is created [BAOS].

3.4 Translation of Floating-Point Instructions

Floating point instructions pose a challenge not only in hardware but also for binary
translators, as different architectures may implement different behaviour regarding
rounding, exceptions, and more. To keep performance overhead low, binary translators
should aim at keeping software emulation of instructions down to a minimum.

Support for floating-point instructions in LLBT [She+12] has been implemented
by You, Lin, and Yang. ARM supports different rounding modes for floating-point
instructions, for both intermediate and final results. As LLVM does not allow setting
rounding modes for either of those, this behaviour needs to be implemented with
software emulation. In order to replicate the original behavior in the raised code,
intermediate results may need to be calculated for some instructions to get to the
correct result. To check for hardware exceptions, the operands and the result of
instructions need to be checked by the generated LLVM code [YLY19].

20

4 Contributions

Within the scope of this project, we have implemented previously unsupported instruc-
tions and fixed bugs that existed when raising programs, particularly ones with higher
optimization levels (-02, -03).

4.1 Support for Floating-Point Arguments and Return Values

One of the more extensive modifications to MCTOLL we have implemented is support
for floating-point arguments and return values. This required some modifications to
both function prototype discovery and argument discovery while raising a call function
as described in Sections 2.5.1 to 2.5.2. The algorithm described in Section 2.5.1 does
not apply to SSE registers, as they do not expose subregisters, and different data types
may be stored in the same register. Additionally, both floating-point values and vector
values may be stored in SSE registers.

4.1.1 Function Prototype Discovery

To determine the type stored in a register, we need to look at the instruction using the
register. To achieve this, we differentiate between two types of SSE instructions:

Packed instructions operate on the full vector register. They operate on vectors of
integers or floating-point values.
The discovered type is a 128 bit wide vector, the type and count of elements
depends on the instruction.
Example: ADDPD (Add packed double, works on a vector of two double values) —
<2 x double>

Scalar instructions operate on the lower 32 or 64 bits of the register. They operate on
single floating-point values, the discovered type is either a float or double.
Example: ADDSD (Add scalar double, works on a single double value stored in the
lower 64 bits of the SSE registers) — double

The same type discovery is done for both the arguments and return type. Figure 4.1
shows how two functions that use the same argument and return discovery are raised
to different function prototypes, depending on which instruction uses the register.

21

4 Contributions

add_double: define dso_local double @add_double(double %1) {
addsd xmmO, xmmO %2 = add double %1, %1
ret return %2
}
add_float: define dso_local double @add_float(float %1) {
addss xmmO, xmmO %2 = add float %1, %1
ret return %2
}

(a) Original code
(b) Raised code

Figure 4.1: Discovered arguments passed in SSE registers

4.1.2 Call-Argument Discovery

The existing code had to be extended to look up SSE registers” values to support
floating-point arguments. For vararg function calls, additional changes had to be
implemented.

System-V requires to pass the number of SSE registers used in the AL register when
calling a varargs function. Compilers usually generate an instruction that sets AL to a
constant, e.g. MOV AL, 1. We leverage this behaviour and search for a reaching value
for the AL register. If this value is a constant, we look up the value and search for that
amount of SSE registers. If we do not find a constant stored in AL, we fall back to the
approach used for general purpose registers.

Parameter Ordering For vararg function calls, we run into the problem of parameter
order: since System-V does not preserve the order of arguments passed in general
purpose and SSE registers, we cannot precisely reconstruct the function call with all
parameters in their original position. We assume that arguments passed in general
purpose registers come before those passed in SSE registers. In Figure 4.2 we show
how a raised printf call will have a different parameter ordering than the original one.
While this is not an issue when re-compiling to ARM64 or another architecture that
separates argument registers for integral and floating-point types, we cannot re-compile
for architectures that pass integral and floating-point values in the same registers.

This issue only arises for external vararg functions, not those raised by MCTOLL,
since the order of arguments for those is set by MCTOLL.

22

4 Contributions

printf (, 1.5, 2, 3.0);
(a) Call to printf with mixed int and double arguments
%1 = call i32 (i8%, ...) @printf(i8* %0, 132 2, double 1.5, double 3.0)

(b) Raised code, with all int arguments preceding the double arguments

Figure 4.2: Raised function call with mixed general purpose and SSE arguments

128 112 96 80 64 48 32 16 0
| | | | | |

float

128 112 96 80 64 48 32 16 0
| | | | | |

double

128 112 96 80 64 48 32 16 0
! ! ! !

i32 i32 i32 i32

Figure 4.3: Different values stored in an XMM register

23

4 Contributions

4.1.3 Handling of SSE Register Values

SSE registers are 128 bit wide and may hold different scalar or packed values, as can be
seen in Figure 4.3. These values can be 16, 32, 64, or 128 bit wide. While scalar types
only occupy the lower n bits of the register, packed types use the entire register.

We can deduce the LLVM type from the register used for integer types by looking at
the register size. This is not possible for SSE registers, as they do not expose subregisters
for each type. Instead, we use the instruction to check which type they operate on.

addsd This instruction operates on a scalar double value stored in the lower 64 bits of
the register. The produced result is stored in the lower 64 bits again, while the
upper 64 bits are set to zero.

paddw This instruction operates on four packed 32 bit integer values.

Since the programmer may mix SSE instructions operating on different types, we
cast the value to the appropriate type for the instruction being raised on-demand. If an
instruction only operates on the lower 1 bits of a register and sets the remaining bits to
zero (as most scalar floating-point instructions do), we do not save those upper bits
that are zero. This has the advantage that consecutive SSE instructions that operate on
the same type do not have to cast anything and can be translated into LLVM with less
overhead. If an instruction operates on higher bits that are missing in the value stored
in the register-SSA map for the current register, we assume that those bits were set to
zero by a previous instruction.

Casting Values in LLVM Since a cast is implicit in x86 assembly and should not
modify any bits, we use bitcasts and LLVM vector instructions to get to the required
type. In the following sections, src is the source type, dst is the destination type, and
|x| is the type’s bit width. Three cases need to be handled.

1. |src| = |dst|: In this case, a simple bitcast instruction is used to cast the value to
the desired type.

2. |src| < |dst|: Since we assume missing bits to be zero, we first create a 128 bit
wide vector of the type <n x src>, where n = %. Then, we insert the source
value into position 0 of the created vector and bit-cast the value to the destination

one.

3. |src| > |dst|: Here, we first bitcast the source value to a bit vector of type <n x

dst>, where n = % and return the element at position 0.

In Figure 4.4 we show generated LLVM bitcode for cases 2 and 3.

24

4 Contributions

%0 = insertelement <2 x double> zeroinitializer, double %argl, i64 0
%1 = bitcast <2 x double> %0 to <4 x i32>
(a) double — <4 x i32>
%0 = bitcast <4 x i32> %argl to <4 x float>
%1 = extractelement <4 x float> %0, i64 O

(b) <4 x 132> — float

Figure 4.4: SSE register type casting

4.1.4 Stack Promotion of SSE Registers

In order to support programs using SSE registers, the stack promotion algorithm
described in Section 2.5.3 needed to be updated to support all types of SSE values. If
we encounter an SSE value that needs to be promoted, we allocate a 128 bit <4 x 132>
stack slot. Should a value be less than 128 bits wide, we pad the remaining bits with
zeros. When the value is reread, we re-interpret the value as described in Section 4.1.3.

4.2 List of other Contributions

We have added support for instructions found in the phoenix-2.0 benchmark, the
execution of which we will evaluate in Chapter 5. To find instructions not yet supported,
we first tried raising benchmarks that were compiled without any optimizations. Once
we could raise non-optimized binaries, we continued raising the same benchmark
compiled with higher optimization levels, each time raising and looking for new
instructions, implementing those, and continuing. With optimization levels -02 and
-03 in particular, subtle bugs in the code became visible. Compilers optimize very
aggressively, and the produced code is not straightforward.

At the time of writing, we have submitted 45 pull requests to the MCTOLL reposi-
toryl, 43 of which are merged while 2 are still under review.

4.2.1 SSE Floating-Point Arithmetic Instructions

The following instructions are the basic SSE floating-point instructions.

® addsd, addss

® subss, subsd

Ihttps://github.com/microsoft/llvm-mctoll/pulls

25

https://github.com/microsoft/llvm-mctoll/pulls

4 Contributions

® mulsd, mulss
® divsd, divss

® sqrtsd, sqrtss

With the exception of the square root instructions, these operations translate directly
to LLVMs fadd, fsub, fmul, and fdiv instructions. LLVM does not provide an instruc-
tion to calculate a floating-point square root, but it provides an intrinsic function we
can call. If one operand is a memory operand, the instructions to load the value from
memory are inserted before the arithmetic instruction.

addsd xmmO, xmml %3 = fadd double %0, %1

subsd xmmO, xmm2 %4 = fsub double %3, %2

mulsd xmmO, xmml %5 = fmul double %4, %1

divsd xmmO, xmm?2 %6 = fdiv double %5, %2

sqrtsd xmmO %7 = call double @llvm.sqrt.f64(double %6)
(a) Arithmetic instructions (b) Raised code

Figure 4.5: Raised SSE floating-point arithmetic

4.2.2 SSE min/max Instructions

There are two instructions to select the minimum/maximum value of two registers:

® maxsd, maxss
® minsd, minss
The first argument is compared to the second one according to the following rules:
dst — {argz & argy = argo Vargy = NaN Varg, = NaN

argy < argy < argy (> for max)

This comparison can be mirrored in LLVM with an f cmp instruction with ogt (ordered
greater than) and olt (ordered less than) and a select instruction. Figure 4.6 shows
how a minsd instruction will be raised.

26

4 Contributions

fcmp olt double %0, %1
select il Y%cmp, double %0, double %1

(b) Raised code

%cmp

minsd xmmO, xmml o .
Ymin

(a) Arithmetic instruction
Figure 4.6: Raised SSE min/max instructions

4.2.3 SSE Floating-Point Bitwise Instructions

The following bitwise instructions operate on packed floating-point values stored in
the XMM registers. The semantics for this instruction are the same as those for packed
integers (see Section 4.2.7). However, the processor may have different data buses and
execution units for integer and floating-point types. Mixing types may cause a delay of
a few clock cycles when switching execution units [Fog21, p. 119].

® andpd, andps
® orpd, orps
® xorpd, xorps

These instructions can not be directly translated to LLVM, as LLVM does not support
bitwise operations on floating-point values. We can, however, bitcast the values to
integer values, perform the bitwise operation, and bitcast the value back to its original
type. In Figure 4.7 we can see an example where the two input arguments are assumed
to be doubles. We first have to cast them to the expected input type (<2 x double>)
by zero-extending the current value. Once this is done, we bitcast the values to 1128,
where we then perform the and operation. Afterward, the value is cast to <2 x double>
again, as this is the input and output type for this particular instruction. There is space
for optimization left here, as the generated instructions are somewhat redundant in
some cases.

Setting a Register to 0 with xor Often, instructions like xorps xmmO, xmmO are gener-
ated to zero-out a register. We recognize patterns like these and update the register-SSA
map to set the register value to zero.
4.2.4 SSE FP Comparison Operations
There are two kinds of SSE floating-point operations we support:

¢ ucomisd, ucomiss (Unordered Compare Scalar Set EFLAGS)

¢ cmpsd, cmpss (Compare Scalar)

27

4 Contributions

%0 = bitcast double %argl to i64
%1 = zext i64 %0 to i128
%2 = bitcast 128 %1 to <2 x double>
%3 = bitcast double %arg2 to i64
%4 = zext i64 %3 to 1128
%5 = bitcast 128 %4 to <2 x double>
(a) Packed bitwise instruction Y6 = bitcast <2 x double> %4 to i128
%7 = bitcast <2 x double> %5 to 1128
%8 = and 1128 %6, %7
f%result = bitcast 1128 %8 to <2 x double>

(b) Raised code

andpd xmmO, xmml

Figure 4.7: Raised SSE bitwise instruction

Result ZF | PF | CF
Unordered | 1 |1 | 1
Greaterthan | 0 | 0 | O
Less than 0]0]1
Equal 100

Table 4.1: Status flag values for ucomisd/ucomiss

Unordered Compare Scalar Set EFLAGS

The ucomis instructions compare their arguments and set the processor’s status flags
according to the result. In Table 4.1 the value of the different flags for all possible
results is shown.

In LLVM, we can use the fcmp instruction with the following comparison condition
to calculate the flag’s value:

® ZF: ueq (unordered or equal)
e PF: uno (unordered)

e CF: ult (unordered or less than)

In Figure 4.8 we show how a ucomisd instruction is raised.

28

4 Contributions

%CF = fcmp ult double %0, %1
ucomisd xmm0O, xmmil %ZF = fcmp ueq double %0, %1
%PF = fcmp uno double %0, %1

(a) Compare instruction
(b) Raised code

Figure 4.8: Raised SSE Unordered Compare Scalar Set EFLAGS instruction

Predicate immediate | Pseudo-Op Description LLVM fcmp predicate
0 cmpeq ordered and equal fcmp oeq
1 cmplt ordered and less than fcmp olt
2 cmple ordered and less or equal fcmp ole
3 cmpunord unordered fcmp uno
4 cmpneq ordered and not equal fcmp one
5 cmpnlt not less than fcmp olt and not
6 cmpnle not less and equal fcmp ole and not
7 cmpord ordered fcmp ord

Table 4.2: Compare Scalar comparison predicates

Compare Scalar

This instruction supports eight comparison predicates that dictate the comparison
semantics. The destination register is set to a quad- or doubleword mask of all ones if
the comparison is true or a mask of all zeros if the comparison is false.

We then use a select instruction to get the correct bitmask, as shown in Figure 4.9.

%0 = fcmp oeq double %argl, J%arg2

%1 = bitcast i64 -1 to double
cmpegsd xmmQO, xmml .))

%#2 = bitcast i64 0 to double

(a) Compare instruction Yresult = select il %0, double %1, double %2

(b) Raised code

Figure 4.9: Raised SSE Compare Scalar instruction

4.2.5 SSE Move Packed FP Instructions

The following SSE instructions are used to move a vector of packed floating-point
values from and to SSE registers.

29

4 Contributions

¢ movapd, movaps (Move Aligned Packed Double/Single-Precision Floating-Point
Values)

¢ movupd, movups (Move Unaligned Packed Double/Single-Precision Floating-Point
Values)

The aligned version of these instruction is used when the memory is known to be
aligned on a 16 byte boundary, which offers a performance benefit. The unaligned
instructions do not require the memory to be aligned, but are slower than the aligned
ones. Support for non-packed versions (movsd, movss) of these instructions was already
implemented in MCTOLL.

If the move is a register-register move, we update the register-SSA map, analogous to
non-SSE register-register moves. If one of the operands is a memory location, however,
we need to create a load or store instruction. We can reuse the existing code here,
as the semantics are the same as for non-SSE moves. Figure 4.10 shows how a move
from a read-only region to the stack will get translated. Note that %rodata is a global
variable containing all read-only data raised from the source binary.

q 0. [.L.val] %0 = bitcast i8* %rodata to <2 x double>*
m°Vupd ’Emm o 'ga %1 = load <2 x double>, <2 x double>* %0, align 1
movupd Lrspt, xmm %2 = bitcast i64x* Ystack to <2 x double>x*

(a) Assembly instruc- store <2 x double> %1, <2 x double>* %2, align 1

tions
(b) Raised code

Figure 4.10: Raised SSE Move Packed FP

4.2.6 SSE Conversion Instructions

We support the following conversions between double <+ float and i64/i32
double/float. We do this by utilizing the following LLVM instructions:

® double > float: fpext/ftrunc
e i64/1i32 <> double/float: fptosi/sitofp

Figure 4.11 shows an example of three raised instructions.

4.2.7 SSE Integer Bitwise Operations

The pand, por, and pxor instructions can be mapped to a single LLVM instruction, as
LLVMs and, or, and xor instructions work on integer and integer vectors [LLV].

30

4 Contributions

cvtsi2ss xmmO, rsi %0 = sitofp i64 Yargl to float

cvtss2si esi, xmmO %1 = fptosi float %0 to i32

cvtss2sd xmmO, xmmO %3 = fpext float %0 to double
(a) Assembly instructions (b) Raised code

Figure 4.11: Raised SSE convert instructions

4.2.8 SSE movq/movd Instructions

The movq/movd instructions copy a quad- (64 bits) or double word (32 bits) from the
source to the destination operand without changing any of the bits. These instructions
allow moving data from general purpose to SSE registers. Unlike the conversion
instructions described in Section 4.2.6, we do not change any of the bits in the input
values. We insert a bitcast to cast the value to the appropriate type for the destination
register. This is shown in Figure 4.12.

movq rax, xmmO %2 = bitcast double %0 to i64
bitcast i32 %1 to float

movd xmmO, edi %3

(a) Assembly instructions (b) Raised code

Figure 4.12: Raised SSE movq/movd instructions

4.2.9 Bit Test Instructions

We have added support for BT (Bit Test), BTS (Bit Test and Set), BTR (Bit Test and Reset),
and BTS (Bit Test and Complemented). These instructions take one register or memory
operand to check against and a second register or immediate operand specifying the
index of the bit to check. If the first operand is a register, the index of the bit to check
should be calculated by taking the modulus of 16, 32, or 64 (depending on the register
size). The instruction sets the carry flag to the value of the specified bit. Additionally,
the different variants change the bit in the source operand:

e BTS: Set the bit to 1
e BTR: Set the bit to 0
* BTC: Flip the bit value

We use a series of shift and bitwise instructions to emulate the behavior described
above. Figure 4.13 shows how the BT and BTS instructions are raised. BTR and BTC are

31

4 Contributions

calculated similarly to BTS, except that they use a logical and and a not to unset the bit,
and a xor to flip the bit.

%0 = urem i32 4, 32
%1 = shl i32 1, %0

bt rax, 4 .] . ,
%2 = and 132 Yargl, %1

(a) Assembly instructions #CF = icmp ne i32 %2, 0
(b) Raised code

%0 = urem i32 4, 32
%1 = shl i32 1, %0
bts rax, 4 %2 = and 132 %argl, %1

%CF = icmp ne i32 %2, 0
%result = or i32 jargl, %1

(d) Raised code

(c) Assembly instructions

Figure 4.13: Raised Bit Test instructions

4.2.10 Multiplication Instructions

While integer multiplication instructions were already available in MCTOLL, the raising
of single-operand instructions was broken. After our patch, the following mul/imul
instructions are supported:

e IMUL16r, IMUL32r, IMUL64r (sighed multiplication)
® MUL16r, MUL32r, MUL64r (unsigned multiplication)

The instructions take one operand and multiply it with either AX, EAX, or RAX, de-
pending on the size of the operand. Since the result may overflow, it is stored in the
registers DX : AX, EDX: EAX, or RDX:RAX, again depending on the size of the operand. To
signal an overflow, OF and CF are set if the result does not fit into the register used to
store the lower half of the result and cleared otherwise.

For the unsigned variant, this is done by checking if the upper half is zero. For the
signed instruction, we sign-extend the lower half and check if the sign-extended value
is the exact result of the multiplication. This is shown in Figure 4.14.

4.2.11 Vararg Argument Discovery

When a vararg function call is discovered, we need to check how many arguments are
passed to that function. MCTOLL does this by iterating over all argument registers and

32

4 Contributions

%0 = sext i64 %RAX to i128
%1 = sext i64 %RDX to 1128
%2 = mul nsw 1128 %0, %1
%3 = 1lshr 1128 %2, 64

imul rdi . . .)
%RDX1 = trunc i128 %3 to i64

(a) Assembly instructions YRAX1 = trunc i128 %2 to i64
%4 = sext i64 %RAX1 to i128
%CF = icmp ne 1128 %4, %2

(b) Raised code

Figure 4.14: Raised multiplication instruction

checking if they have a reaching value.

This is done by walking back the reconstructed CFG and checking each instruction
for a register definition. If a call instruction is encountered, MCTOLL does not look
further ahead, as function calls do not preserve argument registers.

The algorithm to determine if there was a reaching value for an argument register
was implemented as follows:

1. Check if the current basic block contains a register definition for the register.

2. Otherwise, recursively check all predecessor blocks if there are as many reaching
register definitions as the current basic block has predecessors.

This algorithm has a flaw, as it does not consider that predecessor blocks may not
define a register, but one of their predecessors does.

An example for an incorrectly identified parameter register is shown in Figure 4.15.
We are checking for vararg registers in .bb.2. Since .bb.2 does not define rdx, and
.bb. 2 has one predecessor, we check if there is exactly one reaching definition. This is
the case, since .bb.3 defines RDX, although it is not an argument register. In order for
RDX to be a valid argument register, either .entry and .bb.2 or .bb.1 would need to
define RDX.

The new algorithm works recursively:

1. If the current block defines the register, return true.

2. Otherwise, call the function recursively for each predecessor block and check if
all of them return true.

33

4 Contributions

.entry:

.bb.1:

.bb.2:

mov rdi, offset .L.str
mov rsi, O

call printf

cond =1

.bb.3:

mov rdx, 1 ;temp value

cond =0

.exit:

ret

Figure 4.15: Control flow graph with a vararg function call

34

4 Contributions

4.2.12 Various Bug Fixes

This section will describe a number of the bug fixes we submitted? to MCTOLL. Most
of these bugs occurred when trying to raise optimized programs and benchmarks.

Identifying Implicitly-Set Registers for Vararg Calls

Registers that were set implicitly by instructions such as idiv or div were not considered
as arguments for vararg functions previously. We fixed this by checking all definitions
of an instruction instead of only explicit ones for register definitions when searching
for potential argument registers.

Detecting Return Types for Functions Tail-Calling other Functions

An optimization often encountered in functions which return the result of another
function call are tail calls. A tail call is the last instruction of a function that calls
another function or itself. Instead of owning a stack frame, calling the next function,
and then returning, no stack frame is set up; a jump instruction is used to jump to
the next function. In Figure 4.16 the function my_strlen calls strlen with a modified
parameter. The result is immediately returned. We have patched MCTOLL to allow
detecting these cases and setting the function’s return type to the one of the called
function.

int my_strlen(char *str) { my_strlen:
return strlen(str + 1); add rdi, 1
} jmp strlen
(a) Original code (b) Compiled code using a tail-call

Figure 4.16: Tail-call optimization

Support for External Variables

Variables which are not declared in the program itself but in included system header
tiles should be declared as external in the raised bitcode.

Variables such as stdout, stdin, or others are declared as extern variables in the C
header sources. In the compiled program, they are declared in the .bss section of the
program, which means the operating system will initialize them with zero once it loads

2 All submitted fixes can be viewed at https://github. com/microsoft/11lvm-mctoll/pulls.

35

https://github.com/microsoft/llvm-mctoll/pulls

4 Contributions

the program into memory. The C runtime is responsible for initializing these variables.
While raising a program using these variables, MCTOLL initializes the variables with
zero, as they are declared in the .bss section. This produces the following bitcode:

@stdout = common dso_local global i64 0, align 8

The correct way would be to declare the variable as external and let the linker figure
out where and how the variable is initialized. Since the user of MCTOLL already has to
pass a list of system headers to the tool in order for it to know about external function
declarations, we patched MCTOLL to scan for variable declarations in these header
files and mark global variables declared there as external instead of initializing them.
This results in the following variable declaration:

@stdout = external dso_local global i64, align 8

Stack Promotion of Moved Registers

Since register-register moves are a no-op when raising code with MCTOLL, the stack
promotion algorithm encountered a problem when promoting a register that contained
a value moved from another register. After a register-register move, the entries in the
register-SSA map for both registers would point to the same LLVM value.

Promoting a register value would generate a store instruction for each incoming
reaching value and a load instruction for each usage of the reaching value. Since
we updated the register-SSA map with the register-register move, the entry for both
registers pointed to the same LLVM value, usages of the first register were updated.
This led to read operations from the stack slot before the stack slot was written to,
which is incorrect. We fixed this bug by only replacing usages of the value if the store
instruction dominates (see Section 2.1.1) the instruction that will be replaced.

Support for assert

Asserts are implemented by checking for the passed condition, and if the condition is
evaluated to false, call __assert_fail, which terminates the program. Every basic block
in LLVM needs to be terminated by a terminator instruction. The bitcode generated
by MCTOLL was incorrect when raising a program containing an assert, as the call
to __assert_fail was the last instruction for the basic block containing it. We fixed
this by inserting an unreachable instruction after every call to
__assert_fail should never return.

_assert_fail, as

36

5 Evaluation

In this section, we evaluate the runtime overhead of raised programs and how re-
optimizations of the raised bitcode impact the overall execution time of the raised
programs.

5.1 Setup

To run the benchmarks for ARM and x86_64, we set up a test machine running on both
platforms to run the raised benchmarks. The benchmarks were compiled using clang
14.0.0 (commit hash ef976337f581!), which was set up to be able to cross-compile for
ARM and x86_64.

S % Il:)target ®-1)
g %PX% mctoll g LLVM.codegen> lPiarget (5.2)
g clai> Pyse mctoll Pg LLVM.opt leR LLVM.codegen]P{arget (53)
g % Pyas mctoll P peephole+LLVM.opt {R M}]P'/carget (54)

We build four binaries for each test, which we will evaluate in Section 5.2.

1. A native binary directly compiled to the target architecture from the source code
2. A raised binary without optimizations after raising

3. A raised binary where LLVM.opt optimizes the generated bitcode

4. A raised binary where the peephole pass runs and then LLVM.opt optimizes the
generated bitcode

Ihttps://github.com/11vm/11lvm-project/tree/ef 976337581

37

https://github.com/llvm/llvm-project/tree/ef976337f581

5 Ewvaluation

ARM For ARM, we used a Raspberry Pi 4 Model B with 4 GB of RAM running
64 bit Debian 11.1. This model features an ARM Cortex-A72 CPU with four cores
that implements the ARMv8 64 bit instruction set. To minimize thermal throttling,
which might skew our results, we installed an active cooling system consisting of an
aluminum heatsink and a small fan. This kept the temperature of the Pi below 35°C for
single-threaded benchmarks and below 45°C for multi-threaded benchmarks, which
used all CPU cores.

x86_64 To run the x86_64 benchmarks, we used a Linux machine with an AMD Ryzen
7 3700X CPU with 8 physical cores and 16 threads and 64 GB of DDR4 RAM running
Debian 11.1.

5.1.1 Benchmarks

To evaluate our program, we used the sequential and pthread versions of the phoenix-2.0
benchmark?. To get a baseline, we cross-compiled each program to aarch64 and x86_64
using clang with optimizaiton level -03. The x86_64 program was then raised to LLVM
bitcode and re-compiled for both target architectures. To check how much overhead
was introduced by MCTOLL, we re-compiled the raised bitcode with optimizations
turned off (-00), with optimizations turned on (-03) and with optimizations turned on
as well as the peephole compiler pass.

5.2 Results

In Figures 5.1 to 5.2 we compare the runtime performance of the phoenix-2.0 benchmark
on ARM, in Figures 5.3 to 5.4 phoenix-2.0 on x86.

5.2.1 Native Binary

We ran the native binary to get a baseline for the execution time, which will be used to
normalize runtimes (the native runtime will be 1).

5.2.2 Raw Overhead Introduced by Translation

To measure the impact of the raw overhead introduced by translating every instruction,
we re-compile the raised bitcode with optimizations turned off (-00). This does not
remove unused instructions generated to calculate implicitly-set processor flags that

2https://github.com/kozyraki/phoenix

38

https://github.com/kozyraki/phoenix

5 Ewvaluation

will not be used in the code. As discussed in Section 2.5.3, reaching register values may
be stored in stack slots. Accessing these produces a significant overhead that LLVM.opt
can optimize.

5.2.3 Optimized Binary

The most important optimizations LLVM.opt performs on the generated bitcode are
* removing unnecessary instructions (e.g., calculating processor flags),
¢ promoting values from the stack to registers with the help of phi nodes, and
¢ further optimizing generated code.

These optimizations manage to almost entirely wipe out the introduced overhead in
all tested benchmarks with the sequential histogram test being the exception. For some
benchmarks, the optimized binaries manage to outperform their native counterpart
consistently.

5.2.4 Optimized Binary with Peephole Pass

The peephole pass does not introduce runtime performance in most test cases, and the
execution time stays the same as in the run without the peephole pass. However, the
peephole pass manages to significantly speed up the runtime of the sequential kmeans
benchmark to the point where it consistently outperforms the native version and runs
in about 70% of the native version’s time.

5.2.5 Cross-Architecture Translation

In this subsection, we compare the benchmarks compiled natively for ARM against the
version compiled for x86 and translated to ARM. Figures 5.1 to 5.2 show the runtime
overhead for the sequential and pthread versions of the phoenix-2.0 benchmark.

We can see that the unoptimized translated version has an overhead that varies
between 11% (pca-seq) and 380% (kmeans-seq). Benchmarks where dead code and
many stack-demotions of registers are generated by MCTOLL show a high overhead
here. By running LLVM.opt with its highest optimization level gets rid of almost all of
this overhead introduced by MCTOLL and we are able to achieve a runtime very close
to the native version. Some benchmarks run even faster than the native version. If we
run MCTOLLs peephole pass and LLVM.opt, we are able to improve the performance
of kmeans-seq and string_match-pthread to be faster than their native counterpart.

39

5 Evaluation

We believe we can achieve these performance gains over the native binaries as we are
effectively running LLVM.opt twice over the generated binary.

By default, LLVM.opt runs a set of predefined optimization passes. By running these
passes twice, LLVM may be able to optimize a binary further.

3.5 -

T

25| .

Normalized Runtime
i

1.5 s |

0.5 a

l0Native [l Raised | I Raised (opt)lBRaised (opt + peephole)

Figure 5.1: Runtime overhead of sequential phoenix-2.0 benchmarks on ARM

40

5 Evaluation

Normalized Runtime

35

251

& & & O

o o O

'xg@% ¢ & SR ®
N

loNative 0 Raised | [Raised (opt)IERaised (opt + peephole)

Figure 5.2: Runtime overhead of pthread phoenix-2.0 benchmarks on ARM

41

5 Ewvaluation

5.2.6 Same-Architecture Translation

In this subsection we compare a native x86 binary against the same binary raised and
re-compiled for x86 again. Figures 5.3 to 5.4 show the overhead of raised binaries
comapred to the native counterpart. For most benchmarks, we see the same result as
we saw for the ARM versions in Section 5.2.5, but with a greater confidence interval for
the pthread programs. This is probably caused by the background load being higher
on the x86 machine than it was on the ARM machine.

We can conclude that recompiling to gain code size is not worth beneficial for the
user.

5.2.7 Binary Size

In Figure 5.5, we compare binary sizes of the native ARM binaries against the translated
binaries optimized for performance (-03) and for code size (-0z). In the plot we only
display the sequential version of the benchmarks, as the results for the pthread ones
are similar. We can see that for some benchmarks there is a marginal improvement in
code size, for others such as histogram, linear_regression, and matrix_multiply there is
no improvement.

42

5 Evaluation

Normalized Runtime

45

3.5

2.5

b

1 1
. > X
&@% . 6\ \'9%/ 0’&6/

NS «

l0Native 0 Raised | [Raised (opt)IIRaised (opt + peephole)

Figure 5.3: Runtime overhead of sequential phoenix-2.0 benchmarks on x86

43

5 Evaluation

Normalized Runtime

3.5

0.5

o 5 S _
& & & N

@%"O VA @Qo‘ &0

l0Native [0 Raised | [Raised (opt)IIRaised (opt + peephole)

Figure 5.4: Runtime overhead of pthread phoenix-2.0 benchmarks on x86

44

5 Evaluation

Binary size in MiB

13

12.5

12

11.5

11

loNativellIRaised (-03) [Raised (-0z)

Figure 5.5: Binary sizes of native and raised benchmarks on x86

45

6 Conclusion

With our work on MCTOLL, we managed to improve its capabilities allowing users to
raise more real-world programs than before. The support for floating-point arguments,
return types, and instructions allow a wide range of programs to be raised, which was
impossible before.

Additionally, we managed to fix issues that prevented programs which used exter-
nally defined variables (e.g., stdout) to be raised.

6.1 Future Work

At the time of writing, the most common instructions are supported, but there are still
thousands of less frequently used instructions that are not implemented in the raiser,
both from the x86 set and from later extensions such as AVX or AVX2. Implementing
those would be working towards raising real-world programs and running them
efficiently on different architectures.

As raising programs with indirect jumps is not possible with this static approach, a
hybrid approach where static translation does most of the heavy lifting and dynamic
binary translation is used for the part where static translation cannot translate the
binary. This work could allow running programs on other platforms without significant
overhead.

To correctly raise multi-threaded programs from ISAs using a strong memory model
to a weak one (e.g., x86 to ARM), the raiser would need to insert memory fences, which
is not done at the moment. This leads to potentially incorrect program execution on the
weak memory model architecture. In this thesis, we do not evaluate programs which
access shared memory in a way that violates these assumptions, but this is not true for
all multi-threaded programes.

46

List

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29
2.10
211
212
2.13
2.14
2.15
2.16
217
2.18
2.19

41
4.2
4.3
44
4.5
4.6
4.7
4.8
49
4.10
4.11
4.12

of Figures

Example of a control flow graph 3
Dominator tree from the CFG in Figure2.1 4
Workflow of clangand LLVM 5
x86_64 general purpose registers L. 6
Vector registers introduced by SIMD extensions 7
Example of a vararg function 8
Integer-only method 0oL 9
Mixed arguments L Lo 10
Vararg arguments L 10
MCTOLL workflow 11
RAX with its subregisters o o oo L 12
Discovered arguments passed in general purpose registers 13
Return type detection example 14
Register-SSA map keeping track of register values in different blocks . . 15
Raised add operation L oL 15

Register-SSA map before and after raising the add operation in Figure 2.15 16

Control flow graph with a register being defined in multiple predecessors. 17
Stack promotion of EAX 17
Example for code optimized by the MCTOLL peephole pass 18
Discovered arguments passed in SSE registers 22
Raised function call with mixed general purpose and SSE arguments . . 23
Different values stored in an XMM register 23
SSE register type casting L Lo 25
Raised SSE floating-point arithmetic 26
Raised SSE min/max instructions 27
Raised SSE bitwise instruction 28
Raised UCOMIS instruction 29
Raised SSE CMPS instruction 29
Raised SSE Move Packed FP 30
Raised SSE convert instructions 31
Raised SSE movq/movd instructions 31

47

List of Figures

4.13
4.14
4.15
4.16

51
52
5.3
54
55

Raised Bit Test instructions
Raised multiplication instruction
Control flow graph with a vararg functioncall
Tail-call optimization

Runtime overhead of sequential phoenix-2.0 benchmarks on ARM . . .
Runtime overhead of pthread phoenix-2.0 benchmarks on ARM
Runtime overhead of sequential phoenix-2.0 benchmarks on x86

Runtime overhead of pthread phoenix-2.0 benchmarks on x86
Binary sizes of native and raised benchmarksonx86

48

List of Tables

2.1
2.2

41
4.2

System-V parameter registers
System-V return registers

Status flag values for ucomisd/ucomiss
Compare Scalar comparison predicates

49

Bibliography

[AL170]

[App]

[BAOS]

[Bar+03]

[Bel05]

[Che+08]

[Cif+02]

[Fog21]

F. E. Allen. “Control Flow Analysis.” In: Proceedings of a Symposium on Com-
piler Optimization. Urbana-Champaign, Illinois: Association for Computing
Machinery, 1970, 1-19. 1sBN: 9781450373869. por: 10.1145/800028.808479.
URL: https://doi.org/10.1145/800028.808479.

Apple. x86-64 Code Model. URL: https://developer.apple.com/library/
archive /documentation/DeveloperTools/Conceptual /MachOTopics/1-
Articles/x86_64_code.html (visited on 09/09/2021).

S. Bansal and A. Aiken. “Binary Translation Using Peephole Superoptimiz-
ers.” In: Proceedings of the 8th USENIX Conference on Operating Systems Design
and Implementation. OSDI'08. San Diego, California: USENIX Association,
2008, 177-192.

L. Baraz, T. Devor, O. Etzion, S. Goldenberg, A. Skaletsky, Y. Wang, and
Y. Zemach. “IA-32 execution layer: a two-phase dynamic translator designed
to support IA-32 applications on Itanium/spl reg/-based systems.” In: Pro-
ceedings. 36th Annual IEEE/ACM International Symposium on Microarchitecture,
2003. MICRO-36. 2003, pp. 191-201. por: 10.1109/MICR0.2003.1253195.

F. Bellard. “QEMU, a fast and portable dynamic translator.” In: USENIX
annual technical conference, FREENIX Track. Vol. 41. Califor-nia, USA. 2005,
p- 46.

J.-Y. Chen, W. Yang, J. Hung, C. Su, and W. C. Hsu. “A Static Binary
Translator for Efficient Migration of ARM based Applications.” In: (Jan.
2008).

C. Cifuentes, M. Van Emmerik, N. Ramsey, and B. Lewis. Experience in
the Design, Implementation and Use of a Retargetable Static Binary Translation
Framework. Tech. rep. USA, 2002.

A. Fog. Optimizing subroutines in assembly language. 2021. URL: https://wuw.
agner.org/optimize/optimizing_assembly.pdf (visited on 11/05/2021).

50

https://doi.org/10.1145/800028.808479
https://doi.org/10.1145/800028.808479
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/MachOTopics/1-Articles/x86_64_code.html
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/MachOTopics/1-Articles/x86_64_code.html
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/MachOTopics/1-Articles/x86_64_code.html
https://doi.org/10.1109/MICRO.2003.1253195
https://www.agner.org/optimize/optimizing_assembly.pdf
https://www.agner.org/optimize/optimizing_assembly.pdf

Bibliography

[LAO4]

[LLV]
[LM69]

[Lu+]

[McK65]

[Pro59]

[Ran+07]

[RWZ8S8]

[She+12]

C. Lattner and V. Adve. “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation.” In: Proceedings of the 2004 Interna-
tional Symposium on Code Generation and Optimization (CGO’04). Palo Alto,
California, Mar. 2004.

LLVM. LLVM Project. URL: https://11lvm.org (visited on 09/09/2021).

E.S. Lowry and C. W. Medlock. “Object Code Optimization.” In: Commun.
ACM 12.1 (Jan. 1969), 13-22. 1ssN: 0001-0782. por: 10.1145/362835.362838.
URL: https://doi.org/10.1145/362835.362838.

H. Lu, M. Matz, M. Girkar, J. Hubi¢ka, A. Jaeger, and M. Mitchell. System V
Application Binary Interface. URL: https://gitlab.com/x86-psABIs/x86-64-
ABI/-/jobs/1438137053/artifacts/file/x86-64-ABI/abi.pdf (visited
on 09/09/2021).

W. M. McKeeman. “Peephole Optimization.” In: Commun. ACM 8.7 (July
1965), 443—-444. 1ssn: 0001-0782. por: 10.1145/364995.365000. URL: https:
//doi.org/10.1145/364995.365000

R. T. Prosser. “Applications of Boolean Matrices to the Analysis of Flow
Diagrams.” In: Papers Presented at the December 1-3, 1959, Eastern Joint IRE-
AIEE-ACM Computer Conference. IRE-AIEE-ACM ’59 (Eastern). Boston, Mas-
sachusetts: Association for Computing Machinery, 1959, 133-138. 1SBN:
9781450378680. po1: 10.1145/1460299.1460314. URL: https://doi.org/10.
1145/1460299.1460314.

C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis.
“Evaluating MapReduce for Multi-core and Multiprocessor Systems.” In:
2007 IEEE 13th International Symposium on High Performance Computer Archi-
tecture. 2007, pp. 13-24. por: 10.1109/HPCA. 2007 .346181.

B. Rosen, M. Wegman, and K. Zadeck. “Global value numbers and re-
dundant computations.” In: 15th Annual ACM Symposium on Principles of
Programming Languages (Jan. 1988), pp. 12-27. por1: 10.1145/73560.73562.

B.-Y. Shen,].-Y. Chen, W.-C. Hsu, and W. Yang. “LLBT: An LLVM-Based
Static Binary Translator.” In: Proceedings of the 2012 International Conference
on Compilers, Architectures and Synthesis for Embedded Systems. CASES "12.
Tampere, Finland: Association for Computing Machinery, 2012, 51-60. 1SBN:
9781450314244. por: 10.1145/2380403.2380419. URL: https://doi.org/10.
1145/2380403.2380419.

51

https://llvm.org
https://doi.org/10.1145/362835.362838
https://doi.org/10.1145/362835.362838
https://gitlab.com/x86-psABIs/x86-64-ABI/-/jobs/1438137053/artifacts/file/x86-64-ABI/abi.pdf
https://gitlab.com/x86-psABIs/x86-64-ABI/-/jobs/1438137053/artifacts/file/x86-64-ABI/abi.pdf
https://doi.org/10.1145/364995.365000
https://doi.org/10.1145/364995.365000
https://doi.org/10.1145/364995.365000
https://doi.org/10.1145/1460299.1460314
https://doi.org/10.1145/1460299.1460314
https://doi.org/10.1145/1460299.1460314
https://doi.org/10.1109/HPCA.2007.346181
https://doi.org/10.1145/73560.73562
https://doi.org/10.1145/2380403.2380419
https://doi.org/10.1145/2380403.2380419
https://doi.org/10.1145/2380403.2380419

Bibliography

[YLY19]

[YS19]

[ZT00]

Y.-P. You, T.-C. Lin, and W. Yang. “Translating AArch64 Floating-Point In-
struction Set to the X86-64 Platform.” In: Proceedings of the 48th International
Conference on Parallel Processing: Workshops. ICPP 2019. Kyoto, Japan: Associ-
ation for Computing Machinery, 2019. 1sBN: 9781450371964. por: 10.1145/
3339186.3339192. URL: https://doi.org/10.1145/3339186.3339192.

S. B. Yadavalli and A. Smith. “Raising binaries to LLVM IR with MCTOLL
(WIP paper).” en. In: Proceedings of the 20th ACM SIGPLAN/SIGBED Inter-
national Conference on Languages, Compilers, and Tools for Embedded Systems -
LCTES 2019. Phoenix, AZ, USA: ACM Press, 2019, pp. 213-218. 1sBN: 978-
1-4503-6724-0. por: 10.1145/3316482.3326354. URL: http://dl.acm.org/
citation.cfm?doid=3316482.3326354 (visited on 09/09/2021).

C. Zheng and C. Thompson. “PA-RISC to IA-64: transparent execution, no
recompilation.” In: Computer 33.3 (2000), pp. 47-52. po1: 10.1109/2.825695.

52

https://doi.org/10.1145/3339186.3339192
https://doi.org/10.1145/3339186.3339192
https://doi.org/10.1145/3339186.3339192
https://doi.org/10.1145/3316482.3326354
http://dl.acm.org/citation.cfm?doid=3316482.3326354
http://dl.acm.org/citation.cfm?doid=3316482.3326354
https://doi.org/10.1109/2.825695

	Acknowledgments
	Abstract
	Zusammenfassung
	Contents
	Introduction
	Motivation
	Binary Translation Approaches
	Dynamic Binary Translation
	Static Binary Translation

	Background
	Control Flow Graph
	Dominator Trees

	LLVM
	LLVM Intermediate Representation
	Intrinsic Functions

	x86_64
	SSE

	System-V ABI
	System-V Calling Convention
	Return Registers
	Examples of System-V Calls

	MCTOLL
	Discovering Function Prototypes
	Discovering Non-Terminator Instructions
	Promoting Registers to Stack Slots
	Peephole Optimizations
	Limitations

	Related Work
	Direct Translation
	IR-Based Translation
	Peephole-Based Translation
	Translation of Floating-Point Instructions

	Contributions
	Support for Floating-Point Arguments and Return Values
	Function Prototype Discovery
	Call-Argument Discovery
	Handling of SSE Register Values
	Stack Promotion of SSE Registers

	List of other Contributions
	SSE Floating-Point Arithmetic Instructions
	SSE min/max Instructions
	SSE Floating-Point Bitwise Instructions
	SSE FP Comparison Operations
	SSE Move Packed FP Instructions
	SSE Conversion Instructions
	SSE Integer Bitwise Operations
	SSE movq/movd Instructions
	Bit Test Instructions
	Multiplication Instructions
	Vararg Argument Discovery
	Various Bug Fixes

	Evaluation
	Setup
	Benchmarks

	Results
	Native Binary
	Raw Overhead Introduced by Translation
	Optimized Binary
	Optimized Binary with Peephole Pass
	Cross-Architecture Translation
	Same-Architecture Translation
	Binary Size

	Conclusion
	Future Work

	List of Figures
	List of Tables
	Bibliography

